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Abstract

Deep brain stimulation (DBS) is a widely accepted treatment for the Parkinson’s disease

(PD). Traditionally, DBS is done in an open-loop manner, where stimulation is always

ON, irrespective of the patient needs. As a consequence, patients can feel some side

effects due to the continuous high frequency stimulation. Closed-loop DBS can cater



for this problem as it allows adjusting stimulation according to the patient need. The

selection of open or closed-loop DBS and an optimal algorithm for closed-loop DBS

are some of the main challenges in DBS controller design and typically the decision is

made through sampling based simulations. In this paper, we propose to utilize model

checking, i.e., a formal verification technique used to exhaustively explore the complete

state space of a system, for analyzing DBS controllers. We analyze the timed automata

of the open-loop and closed-loop DBS controllers in response to the basal ganglia (BG)

model. Furthermore, we present a formal verification approach for the closed-loop DBS

controllers using timed computation tree logic (TCTL) properties, i.e., safety, liveness

and deadlock freeness. We show that the closed-loop DBS significantly outperforms

existing open-loop DBS controllers in terms of energy efficiency. Moreover, we for-

mally analyze the closed-loop DBS for energy efficiency and time behavior with two

different algorithms, i.e., Constant Update algorithm and Error Prediction Update algo-

rithm. Our results demonstrate that the closed-loop DBS running the Error Prediction

Update algorithm is efficient in terms of time and energy as compared to the Constant

Update algorithm.

1 Introduction

Parkinson’s disease (PD) is a nervous system disorder that affects the body move-

ment. PD symptoms include muscle rigidity, tremors, and changes in speech and gait.

After Alzheimer’s, PD is considered to be the second major progressive neuro syn-

drome, which causes vital incapacity that affects patients daily routine task, their fam-
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ilies and more importantly can imbalance their health system (Nussbaum et al., 2003;

Chrischilles et al., 1998). Parkinson is expected to be a major disease worldwide with

the passage of time as the population age increases (de Lau et al., 2006; Royal College

of Physicians, 2006; Findley, 2007). PD originates in the basal ganglia (BG), which

is a collection of nuclei situated deeply within the brain and is responsible for motion

related activities. Primate BG is composed of five different nuclei that are Striatum,

Substantia nigra (SN), Subthalamic nucleus (STN), Globus pallidus externus (GPe) and

Globus pallidus internus (GPi). Substantia nigra pars compacta (SNc) play an important

role in body movement by releasing a chemical, called dopamine, to carry out messages

around the brain. In PD, SNc starts dying, which results in reducing the dopamine lev-

els and thus the patient’s brain does not pass messages for regulating body movement.

This, in turn, leads to body movement difficulties called akinesia, muscular stiffness

and slackening in physical movement, which is termed as bradykinesia, shakiness in

standing position and tremor (Jankovic, 2008). More importantly, SNc cannot be re-

placed with healthy body cells, so when the level of dopamine drops, the brain cannot

pass as many messages to control the body as required. To the best of our knowledge,

researchers have not been able to develop any remedies for PD, however there are sev-

eral available ways to manage the symptoms.

L-dopa is traditionally used as a medicine for PD patients, as it helps to create

dopamine molecules within the BG. However, it works for a limited time due to the

tolerance developed against this drug by the patients. Deep Brain Stimulation (DBS)

is a surgical treatment that can help in relieving PD symptoms, where electric stimula-

tions are delivered to the BG region of the brain (Benabid, 2003; Okun, 2012). In this
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Figure 1: BGM network with components modeling the basal ganglia regions

method, electrodes are placed to generate pulses of high frequency (greater than 100

Hz) in the GPi or STN (Rodriguez-Oroz et al., 2005) while the neural activity of the

GPi and TH assist in the PD detection as shown in Fig. 1 (Jovanov et al., 2018).

The most commonly used DBS devices work in an open-loop manner where stimu-

lation/pacing is always ON with fixed parameters (e.g., amplitude (V), pulse repetition

frequency (Hz), pulse width (us)). In such devices, the stimulation parameters are tuned

through manual adjustment by the physicians. In this method, the DBS battery drains

faster due to the continuous stimulation and requires surgical replacement every two

to five years. Furthermore, due to continuous high frequency stimulation, patients can

experience some side effects (Rossi et al., 2016; Deuschl et al., 2006; Cyron, 2016),

such as cognitive dysfunction and speech deficits. Closed-loop DBS can cater for these

issues (Rossi et al., 2016; Hebb et al., 2014; Parastarfeizabadi et al., 2017). In closed-

loop DBS, a sensor continuously monitors the patients state through a feedback signal,

also termed as biomarker, and delivers stimulation accordingly. However, there are cer-

tain challenges in closed-loop DBS such as, selection of a suitable biomarker reflecting

PD symptoms, an appropriate reference signal and implementing a controller to adapt
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to dynamic changes in the reference signal(Su et al., 2019; Kuncel et al., 2004).

1.1 Related Work

Krauss et al. (2021) presented a detailed overview of DBS technology evolution from

external DBS system to internalized DBS system to predict the future advancement.

Multiple DBS electrode configurations, battery designs, and modes of stimulation are

discussed by keeping in view the existing technology. The type of DBS system de-

termines the modes of stimulation, i.e., unipolar, bipolar, directional and interleav-

ing. Adaptive or closed-loop DBS system is discussed in which selection of suitable

biomarker is very important for a specific disease where sensing technology can play

its role for the better efficacy of closed-loop DBS.

A model based design framework to validate different levels of feedback in DBS

controllers (open and closed-loop DBS), where BGM is implemented on an FPGA, is

proposed in (Jovanov et al., 2018). This BGM platform generates the physiological re-

sponse that can be used to evaluate and test the the DBS controller design. Similarly, a

deep reinforcement learning (RL)-based approach is introduced in (Gao et al., 2020) for

analyzing the DBS controller patterns that are effective in reducing PD symptoms and

are energy efficient. The BG region is modeled as a Markov decision process (MDP)

and the brain-on-chip (BOC) on an FPGA is used to evaluate the performance.

Wei et al. (2021) implemented a simplified model for basal ganglia (BG) network

on embedded multi-processors that can generate the PD condition by producing abnor-

mal beta bursts, while ensuring the accuracy. They executed a real-time testbed system

to verify the usability of DBS mechanism using the implemented BG platform. Differ-
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ent open-loop and closed loop DBS controllers were employed in real-time to evaluate

the DBS technique optimization. Their implemented BG platform performed well with

closed-loop DBS under different DBS strategies.

Several studies show that beta band activity can be a suitable feedback signal for

closed-loop DBS. However, during voluntary movement, beta oscillations in BG desyn-

chronize (Brittain et al., 2014). Therefore, a reference signal of constant beta power

may not be appropriate for DBS controlling mechanism. Thus, to include the ability

in the controller to adapt to dynamic changes in the reference signal is quite beneficial.

Su et al. (2019) proposed the beta band power of GPi neuron that can be used as a

biomarker of model state. They used a Proportional-Integral (PI) controller to calcu-

late the current DBS frequency according to the dynamic variations in the beta band

power. Their proposed CTx-BG-Th network’s computational model was used to test

the closed-loop adjustment of stimulation frequency approach.

1.2 Our Novel Contribution

The implantable medical devices, such as DBS controllers, are highly safety-critical

due to the dependency of human life on them. Therefore, such systems need to be rig-

orously analyzed to guarantee robustness and reliability. Traditionally, the analysis of

DBS controllers has been conducted using simulation. Due to the sampling based nature

of simulation, it is very difficult to guarantee that all bugs or corner cases are identified

during the analysis phase. We propose to employ model checking, i.e., a formal verifi-

cation technique, to rigorously verify design (system) and requirements (specifications)

for a variety of real-time embedded and safety critical systems (Hasan et al., 2015).
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Generally, in model checking, the system that needs to be analyzed is represented as

an automaton (state space model) and specifications are written in temporal logic. The

verification of the given properties is done by an exhaustive state-space exploration to

ensure the validity of the given temporal logic properties. Our DBS behavior can best

be modeled as timed automaton due to its time critical nature. So, we used the UPPAAL

model checker, which is based on the theory of timed automata (Behrmann et al., 2011).

The query language of UPPAAL is a subset of timed computation tree logic (TCTL).

There is a dire need of model checking to rigorously explore the complete state space

of DBS controllers for this problem, otherwise a missing test case can lead to a wrong

prediction of the battery life or timing behavior. In our work, we have used the simpli-

fied abstraction of BG network using timed automata to verify the exhaustive behavior

of DBS controllers. To the best of our knowledge, no formal verification method has

been proposed in the context of verifying DBS controllers before.

The main contributions of this paper are as follows:

1. Timed abstraction of the BG model from Hybrid Automata to Timed Automata.

2. Timed Automata of open-loop and closed-loop DBS controllers to generate rele-

vant behavior in response to BG model.

3. Identification of TCTL properties to verify safety, liveness and deadlock freeness.

4. An approach for the formal analysis of energy consumption of DBS controllers,

i.e., open-loop DBS and closed-loop DBS, and their comparison.

5. A case study to analyze the amount of energy delivered and timing behavior of

closed-loop DBS controllers running a specific algorithm.
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The rest of the paper is organized as follows: Section II provides an overview of

model checking and UPPAAL for the better understanding of the paper. Section III

presents the formal models and the proposed verification approach of BG and DBS

controller using the UPPAAL model checker. Section IV describes the amount of de-

livered energy comparison between open-loop and closed-loop DBS and a case study

on the analysis of time and energy efficiency with two different algorithms. Finally,

Section V concludes the paper.

2 Model Checking and UPPAAL

Model checking is a technique to verify design and requirements for a variety of real-

time embedded and safety critical systems. A model checker exhaustively explores the

complete state space of a system to automatically verify if the given properties hold for

the given system, otherwise it generates a trace of the counter example. By observing

the generated trace, systems bugs can be easily identified for model correction. State

space of a complex system can be very large and can lead to the infamous state-space

explosion problem during verification, due to limited resources in terms of time and

memory. Therefore, complex system models need to be abstracted in order to resolve

this problem.

There are many model checkers available, the most popular are NuSMV (Cimatti

et al., 2000), UPPAAL (Behrmann et al., 2011), PRISM (Kwiatkowska, 2003) and SPIN

(Holzmann, 2003). A model checker tool is selected based on its applicability to model

the real-time systems, asynchronous systems, synchronous digital logic, clock synchro-
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nized protocols, etc. Every model checker accepts its own input language with strict

notation and features. The NuSMV tool (Cimatti et al., 2000) is intended to formally

verify finite state systems with specifications given as Computational Tree Logic (CTL)

and Linear Temporal Logic (LTL) formulas. UPPAAL (Behrmann et al., 2011) is in-

tended to formally verify real-time systems where timing aspects are critical. UPPAAL

query language is a subset of CTL. PRISM (Kwiatkowska, 2003) is a probabilistic

symbolic model checker that is used for automatic formal verification of probabilistic

systems. It accepts the system specifications written in the temporal logic Probabilistic

Computation Tree Logic (PCTL). SPIN model checker (Holzmann, 2003) is used to

verify concurrent and distributed systems. It accepts the system specification written in

the verification language Promela.

Table 1 shows the model checker tools and their applicability along with some other

useful information. Thus, a model checker tool is selected depending upon the appli-

cation domain and system characteristics. We have chosen UPPAAL model checker as

the most suitable option for modeling and analysing the DBS systems due to its ability

to model real-time systems along with its distinct features of having a user friendly GUI

and counter-example visualization.

Table 1: Model Checker Tools and their Applicability

NuSMV UPPAAL PRISM SPIN

Types of Semantic Label Transition Timed Transition Probabilistic Semantic Concurrent and Distributed
Model System System Model Systems

Domain Digital Circuits Timed Systems Health Care Communication Protocols

GUI No Yes Yes Yes

Counter Example Generation Yes Yes No Yes

Counter Example Visualization No Yes No Yes
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UPPAAL is a toolbox for modeling, validation and verification of real-time systems,

especially in those application areas where timing is critical, e.g., communication pro-

tocols and real-time controllers. UPPAAL is based on the theory of timed automata,

which is a finite state machine with clocks. The clocks allow us to keep track of contin-

uous time. A timed automaton is a tuple (C, A, F, f0, E, Inv) where:

• C is a set of clocks.

• A is timed automata, i.e., set of all actions, co-actions and the internal τ -action.

• F is a finite set of locations.

• f0 ∈ F is an initial location.

• E is the set of edges.

• Inv assigns invariants to locations.

In UPPAAL, a system is composed of concurrent processes, where each of them

is modeled as an automaton. The automaton has a finite set of locations as nodes,

and edges as arcs between locations. Transitions are annotated with guards, selections,

synchronization and updates. Guards and synchronizations on the transition edge are

used to decide when to take a transition. At the time of transition, two updates are

possible: reset of clocks or assignment of variables. Hand-shaking synchronization in

UPPAAL allows two or more automaton to take a transition at the same time. One

automaton transmits a signal using a! and the other automaton receive that signal using

a?, where “a” represents the synchronization channel, “!” represents transmission of

a signal and “?” represents reception of that signal.
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Model verification is a critical step in model-checking where properties are written

in a formal language. UPPAAL utilizes a simpler version of TCTL properties. UPPAAL

query language supports the following types of properties:

• Safety property:

– E [] P (Exists globally P): There exists a path where query P is always satis-

fies.

– A [] P (Always globally P): For all paths, query P always satisfies.

• Reachability Property:

– E <> P (Possibly): There exists a path at which query P possibly satisfies.

• Liveness property:

– A<> P (Eventually): For all paths, query P eventually satisfies.

– P →Q (Leads-to): Whenever P satisfies, query Q verifies eventually.

• Deadlock Property:

– E <> deadlock: Exists deadlock.

– A [] not deadlock: There is no deadlock.

3 Proposed Methodology

In this section, we present the proposed methodology for the formal modeling and veri-

fication of BG, open-loop DBS and closed-loop DBS controller. BG model is the timed
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abstraction of hybrid automata to timed automata. Thereafter, we present the timed au-

tomaton of the DBS controller behavior in response to BG. Furthermore, we describe

the TCTL properties, i.e., safety, liveness and deadlock freeness, that can be used to

verify our models.

3.1 System Overview:

In the proposed methodology, TH behavior and beta power of GPi is monitored to detect

the PD condition (Jovanov et al., 2018). Thereafter, if PD condition is detected then

stimulations are delivered to STN. The overview of the closed-loop system is shown

in Fig. 2, where BG and DBS model behavior can be observed in terms of broadcast

channels, i.e., THget, THnotS, GPiget, BetaP and SP. THget indicates TH activation

in healthy or PD range, THnotS indicates that the TH activation is not sensed at all,

Figure 2: An overview of our proposed methodology representing the closed-loop DBS

and BG model communication through some synchronization channels.
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GPiget indicates that the beta band power lies in the healthy range, BetaP indicates

that the beta band power lies in the PD range and SP indicates pacing from DBS to

BG. The condition of the BG is indicated by THget!, THnotS!, GPiget! and BetaP!.

Thereafter, DBS processes these signals and generates the pacing action, i.e., SP!, to

the corresponding region of BG if PD is detected.

3.2 Modeling the Basal Ganglia:

In order to verify the functionality of the closed-loop DBS controller, we need a model

of the BG that can capture how a human brain generates the sensory events. BG can be

modeled using non-linear differential equation of Hodgkin-Huxley neuron model (Jo-

vanov et al., 2018; HODGKIN et al., 1952). The model described by such non-linear

differential equations, consists of multiple continuous state variables and comes under

the category of a continuous-time systems. DBS algorithms can be best modeled as a

composition of timed-automata, while the relevant features of BG can be represented

as a network of hybrid automata.

We model each neuron of BG as timed automata by abstracting the hybrid automata,

keeping in view the required level of accuracy for the analysis. As mentioned in (Alur

et al., 2019), a cell/neuron excitation (voltage change with time), upon stimulation,

can be partitioned into some well defined phases that are upstroke, repolarization and

resting. In each phase, the dynamics can be captured by a linear differential equation

and this behavior is described as a hybrid automata. Thereafter, that hybrid automa-

ton is further abstracted to timed automata based upon the timing that a signal takes

to travel through a cell chain as mentioned in (Alur et al., 2019). We abstracted the
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(a) STN Cell (b) GPi Cell

(c) TH Cell

Figure 3: Timed Automaton for the different regions of BG

BG from hybrid automata to timed automata using the same approach, where timing

values (stimulation time interval) for PD and healthy brain are calculated from the data

available in the literature (Jovanov et al., 2018). Each BG neuron, i.e., TH, GPi, STN,

is modeled as a separate process with a global clock named x, and some activation sig-

nals, i.e., THget!, THnotS!, GPiget!, BetaP!, Sget!, as shown in Fig. 3. Each BG neuron

automaton communicates with DBS timed automata using the broadcast channels, i.e.,

Sget!, THget!, THnotS!, GPiget! and BetaP!. The count and gcount varible detail is

discussed in Subsection 3.2 of Section 3.3.

Firing patterns and the time interval details for these BG nuclei are mentioned in

Table 2 for both PD and healthy behavior, where the first two columns presents ex-

perimental results available in literature (Jovanov et al., 2018). We calculated the time

interval of these spikes from the mean firing rates, mfr, as presented in the last two

columns of Table 2. Fig. 3a shows a healthy STN cell that relays an activation sig-

nal, i.e., Sget!, with an interval of [34-111ms]. We aim to analyze TH and GPi cell
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Table 2: Mean Firing Rate Values of Different BG Regions

Cell Healthy PD Healthy PD

mfr [Hz] mfr [Hz] Spikes Interval [ms] Spikes Interval [ms]

STN [9,29] [11,41] [34.4,111.1] [24.3, 90.9]

GPi [59.8,101.2] [76.6,135.4] [9.8,16.7] [7.3, 13.1]

TH [10,20] [5,166.6] [50,100] [6,200]

beta power to detect the PD condition, so we modeled TH and GPi cell such that they

can fire non-deterministically in the healthy or PD range. For example, TH neuron

can fire in any of these intervals, i.e., [50-100ms] for healthy and for PD the interval

is [6-50ms] and [>100ms]. Once TH non-deterministically relays its activation signal

to DBS, its behavior is analyzed according to the corresponding received signal, i.e.,

signal activation with respect to the corresponding time interval. GPi is also modeled

non-deterministically which means that it can generate healthy or PD behavior by re-

laying its activation signal, i.e., GPiget! or BetaP!, where GPiget! indicates that the

beta band power of GPi neuron lies in the healthy range and BetaP! indicates the beta

band power value lies in the PD range. Thereby, DBS model takes TH and GPi activa-

tion signals as input and delivers stimulations to STN if required, i.e., SP!, from DBS

to STN.

A separate automaton as shown in Fig. 4 is also developed for modeling the re-

fractory period, i.e., a period for an excitable membrane to be responsive for a second

stimulus once it returns to its resting state after excitation. Fig. 4 shows the automaton

for single cells of STN, GPi and TH regions of BG. We explain automaton for a STN
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(a) STN Cell (b) GPi Cell

(c) TH Cell

Figure 4: Timed Automaton Modeling the Refractory Period of different regions of BG

cell and the remaining two (GPi and TH) are modeled in a similar manner. For the STN

automaton, whenever the STN activation, i.e., Sget? is sensed, the automaton goes to

the SRP (STN Refractory Period) state followed by the inter state. While making the

transition from inter state to SRP state, it transmits or passes an activation signal SS! that

is detected by the controller automaton by using SS?, where SS indicates that the STN

activation is sensed by the controller. It remains in the SRP state for the TSRP duration,

where TSRP indicates the STN refractory period. By doing so, we limit any excessive

neuron spikes, i.e., Sget? cannot be sensed before the completion of the refractory pe-

riod and again can be sensed after TSRP time duration. The activation behaviors of GPi

and TH cells are captured in the same way in Fig. 4b and Fig. 4c, respectively, with the

similar notation and respective names for cell signals.

We have integrated all the components of BG model, as mentioned in Fig. 3, and
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Fig. 4 by keeping in view the required level of accuracy for the analysis as mentioned

in (Alur et al., 2019). We believe that this abstraction from hybrid automaton to timed

automata would not compromise the real world scenarios as timing aspects (stimula-

tion/response time interval) for PD and healthy brain has been taken from the available

literature (Jovanov et al., 2018). Our abstracted BG model generates the human brain

sensory events just like the real possible scenarios that can be used to verify the func-

tionality of the closed-loop DBS controller.

3.3 Modeling the DBS (Timed Automata):

3.1 Open-Loop DBS Modeling

The Open-loop DBS does not sense the BG condition and continuously deliver stimu-

lations to STN with fixed parameters. Therefore, we also did not include any sensing or

feedback signal in this design model, and stimulations with fixed parameters (e.g., am-

plitude(A) =1V, frequency(f) =115Hz, impedance=1000Ω and pulse width(PW) =200us)

are delivered to STN. An open-loop DBS automaton is shown in Fig. 5, with a delay

activation signal, i.e., Sp!. The electrical energy delivered per unit time (E) is discussed

in detail in Subsection 3.3 of Section 3.4.

3.2 Closed-Loop DBS Modeling

We considered TH neuron pattern to detect any abnormality in BG, as reported in (Jo-

vanov et al., 2018), by considering that TH is not a part of BG but assist in PD detection.

After that, selection of a biomarker to close the feedback loop is quite challenging in the

closed-loop system but we used the beta band power of GPi neuron to identify the PD
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Figure 5: Timed Automaton of Open-loop DBS Controller

condition (Su et al., 2019), since it is an appropriate biomarker reflecting PD symptoms.

So, in order to detect PD, we used both signals, i.e., TH behavior and beta band power

of GPi neuron. The DBS controller takes some input signals from BG, i.e., THget!,

THnotS!, GPiget! and BetaP!, indicating the brain condition, and it delivers stimula-

tions to STN, i.e., transmits the SP! signal to BG, if PD is detected otherwise remains

in its IDLE state of sensing.

The timed automata of DBS for a closed-loop DBS behavior in response to BG is

shown in Fig. 6. In this design implementation, the DBS model remains in its initial

state named IDLE as long as the received BG behavior is healthy. Initially, the DBS con-

troller keeps sensing the TH behavior in its IDLE state by receiving the signals from TH

automaton, i.e., THget! or THnotS!. TH automaton is modeled non-deterministically

because we want to observe all combinations, i.e., either healthy or PD. The DBS model

takes further actions according to the received TH pattern with respect to time as shown

in Fig. 2, i.e., to transition back to the IDLE state if normal TH behavior is observed
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Figure 6: Timed Automaton of Closed-loop DBS Controller.

otherwise transition to the next state where GPi cell beta power is monitored for further

actions. Beta band power of GPi is monitored through a signal from GPi automaton, i.e.,

GPiget!, which indicates that the beta band power value lies within the normal range

and BetaP! indicates that the beta band power value of GPi lies in the PD range. The

DBS takes further actions after monitoring the GPi cell condition, i.e., delivers stim-

ulations to STN if PD is detected otherwise it transitions to the IDLE state if healthy

behavior is detected. Once PD is detected, stimulations are delivered to STN by re-

laying the activation signal, i.e., Sp!, from DBS to BG. There are certain stimulation

parameters that need to be considered while applying stimulation, i.e., f (Hz), A (V)

and PW (us).

After detecting the PD condition, stimulation is applied to STN but the question is

how do we ensure that applied stimulation of any random frequency helps to suppress

the PD symptoms. Jovanov et al. (2018) provided a range of beta band power that

can be used to estimate the BG behavior, i.e., healthy or PD. These frequency stimula-

tions that can shift the beta band power range from PD to healthy (Su et al., 2019) are

quite useful in the context of suppressing PD symptoms. Su et al. (2019) implemented

a PI controller, that delivers the stimulation of randomly selected frequency from the
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given range and estimates the beta band power of that applied stimulation. The cal-

culated beta band power is provided as a feedback signal to the PI controller and the

error is estimated, as the difference between the desired beta band power (reference sig-

nal) and calculated beta band power (feedback signal). Then the PI controller changes

the frequency of its current stimulation according to the error, and keeps on changing

the stimulation frequency until the error is minimized or until the calculated beta band

power (feedback signal) becomes equal to the desired beta band power (reference sig-

nal). So, we implemented the same methodology, where DBS delivers the stimulation

of frequency selected from the given range and calculates the beta power of the ap-

plied stimulation. Accordingly, we considered the relation between the applied DBS

frequency and beta power of that stimulation frequency from (Su et al., 2019).

The DBS controller keeps on changing the stimulation frequency parameter based

upon the error between the calculated and desired beta band power until the error is

zero. The desired beta band power is known (Su et al., 2019) as we considered its value

to be 110. Our DBS model keeps on iterating the loop of StateC to StateD or StateG

to StateH as shown in Fig. 6, where two functions are called named Check Power and

Feedback. Check Power is used to calculate the beta band power in response to that se-

lected/applied frequency and the Feedback function is used to check the error between

the calculated beta band power and the desired beta band power. Once the beta band

power of that applied frequency signal becomes equal to the desired beta band power,

then the model transitions to StateE or SateI (stability is achieved at this state). Af-

ter achieving stability, stimulations are applied for some time interval according to the

design parameters of the considered algorithm and transitions back to its IDLE state.
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Once the IDLE state is reached, the same procedure is repeated, i.e., to detect PD and

apply stimulation and return to the IDLE state once stability is achieved.

The count and gcount are variables used as flags for TH and GPi, respectively.

These flags are set to 1 to prevent the interruption caused by TH and GPi cell activation

when the controller is pacing to STN in the pacing phase. These flags are reset to 0

when the controller is reset or it goes back to the sensing phase because TH and GPi

cell activation detection is required in the sensing phase. The natural pacing activity of

TH and GPi is, however, not affected by using these flag variables.

3.4 Verifying the closed-loop DBS requirements

Model verification is a critical step where the requirements are verified against their

real-time embedded system or controller, i.e., DBS in our case, using a formal tool.

UPPAAL uses a simpler version of TCTL properties. We formally verified our DBS

model requirements using the following properties:

3.1 Safety

The Safety property asserts that something bad will never happen. We aim to deliver

stimulations to the STN whenever PD or any abnormality in the BG is detected. We

made a separate automaton named P1 as shown in Fig. 7a with a local clock named tt.

BetaPS and Sp are broadcast channels, where BetaPS indicates that beta band power

of GPi lies in the PD range and PD condition is sensed by the controller. We want to

detect these signals, i.e., BetaPS and Sp, whenever they are transmitted by the DBS

timed automaton. The clock is reset on the reception of BetaPS signal, i.e., when PD is
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(a) P1 Automaton (b) P2 Automaton

(c) P3 Automaton

Figure 7: Timed Automaton for Properties Verification

detected, and the clock keeps on counting until STN pacing, i.e., reception of Sp signal

form DBS automaton. By doing this, we actually count the total time it takes to deliver

stimulations to STN after PD detection.

Our model delivers stimulations to STN during its normal spike time interval, i.e.,

not before the refractory period and not after the maximum spike time interval of healthy

STN cell. TSRP indicates the STN refractory period and TSLRI indicates the longest

rate interval, i.e., a longest time interval that a healthy STN neuron can take to fire.

Verified safety property for this requirement is mentioned below

• A[] P1.two a imply (P1.tt>=TSRP && P1.tt<=TSLRI )
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By using the above mentioned property, we verified that stimulations to STN are

delivered within TSRP and TSLRI interval. We want to make sure that bad state should

never happen while fulfilling safety requirements. There are two bad states possible in

our case, i.e., STN stimulation delivery before TSRP or after TSLRI, so we verified A[]

not (P1.two a && P1.tt>TSLRI) and A[] not (P1.two a && P1.tt<TSRP) properties

just to ensure that the bad states are never reached.

Another automaton named P2, as shown in Fig. 7b, works with its own local clock

named tt, and two broadcast signals, i.e., BetaPSS and SP. All constraints and require-

ments are the same as mentioned above in the P1 automaton with just a different broad-

cast channel, i.e., BetaPSS instead of BetaPS. BetaPSS in P2 automaton indicates the

detection of PD when the TH activation is not sensed at all, while in P1 automaton the

BetaPS signal indicates the detection of PD with abnormal TH activation. So both cases

and requirements are the same with just different TH neuron pattern detection. Here,

THnotST indicates the abnormal behavior of TH cell (no spikes at all) that can happen

when the TH activation is not sensed by the controller. The controller automaton re-

lays an activation signal THnotST! whenever TH generates no spikes. This activation

signal is then detected by the P2 automaton through THnotST?. The following safety

requirement for this automaton was verified successfully.

• A[] P2.two a imply (P2.tt>=TSRP && P2.tt<=TSLRI )

Another safety constraint is to not have an excessive STN stimulation, i.e., the inter-

val between two consecutive STN pacing ∈ [TSRP,TSLRI]. We made another automa-

ton, named P3, for verifying this safety requirement as shown in Fig. 7c. In this design

implementation, local clock named tt is reset whenever the Sp signal is received. By
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doing this, we actually measure the time between two consecutive STN pacing. We

verified the following property for these safety requirements.

• A[] P3.two a imply (P3.tt>=TSRP && P3.tt<=TSLRI )

3.2 Liveness

The liveness property asserts that, under certain conditions, some event will eventually

occur. In our design methodology, the considered event is STN pacing under the PD

condition. So, we want to verify that whenever the PD is detected, STN pacing will

eventually happen. We used and verified the below mentioned properties in order to

satisfy liveness requirements in our design implementation.

• A<>(T1.StateBeta) imply (T1.StateE or T1.StateD)

• A<>(T1.StateBeta 1)imply (T1.StateH or T1.StateI)

As can be observed from Fig. 6, i.e., the T1 automaton, where PD is detected in

StateBeta or StateBeta 1 and consequently STN pacing is applied in StateE, SatetD,

StateH and StateI. So, by the verification of the above-mentioned liveness properties

we can conclude that whenever PD is detected the STN pacing will eventually occur.

3.3 Supremum and Infimum Queries for Time and Amount of delivered Energy

Analysis

In this case study, we aim to analyze the amount of delivered energy and timing con-

straints that provide an important design guideline in selecting the DBS parameters. By

doing so, we can estimate the total electrical energy delivered per unit time from DBS
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to STN. Thereby, the total energy delivered per unit time (E) can easily be estimated by

using the below mentioned formula (Cagnan et al., 2017).

E = (A ∗ A ∗ PW ∗ f)/impedance

There are certain parameters that need to be considered for the estimation of de-

livered energy, i.e., A (V), PW (us), f (Hz) and impedance (Ω). All parameters except

impedance are programmable (Cagnan et al., 2017). Thereby, we considered a range of

these parameters based on an existing work (Cagnan et al., 2017) as can be observed

from Fig. 6, where the DBS model randomly selects any value of these parameters from

the given range of A (V), PW (us) and f (Hz). We consider a constant value of tissue

impedance faced by electrodes while delivering stimulations (Cagnan et al., 2017).

Generally, UPPAAL return the status of queries by indicating whether they are sat-

isfied or not. However, for some queries, some additional information is also provided,

like for the supremum and infimum queries. These queries find the supremum (max)

or infimum (min) for a given expression for all reachable states that satisfy a particular

predicate. We use the following properties to find the maximum and minimum energy

bounds of delivered stimulations, where q represents delivered electrical energy per unit

time.

• sup{T1.StateE or T1.StateD} : q

• inf{T1.StateE or T1.StateD} : q

By using the above-mentioned queries, amount of delivered energy bounds can be

easily estimated for a given range of parameters. UPPAAL exhaustively explores the
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whole state space for all possible combinations of these parameters and generates max-

imum and minimum energy value, i.e., sup generates the max energy value and inf

generates the min energy value. The get trace option can also be used to identify the

parameters responsible for these energy values generation. Some results are shown in

Table 3, for both inf and sup queries for different parameters range with constant tissue

impedance.

Stimulation timing analysis is also a critical step for any DBS controller design,

i.e., for how much time stimulation are given to achieve stability. We aim to check for

how much time these stimulations are given until stability is achieved. Whereas, as

mentioned in the last section, stability is achieved when the beta band power of applied

signal becomes equal to the desired beta band power. By using these properties, we can

find the maximum and minimum time to achieve stability for a given range of values.

The get trace option can also be used to trace out the parameters responsible for that

time value generation. Properties used for timing analysis are

Table 3: Amount of delivered Energy and Time analysis result for different range of

stimulation parameters

f ∈ {60,130,180}Hz f ∈ {80,105,155}Hz f ∈ {90,145,195}Hz f ∈ {105,170,190}Hz

Properties A ∈ {1,3}V A ∈ {1,3}V A ∈ {1,2}V A ∈ {1,2}V

PW ∈ {60,200}us PW ∈ {60,200}us PW ∈ {50,100}us PW ∈ {50,100}us

inf{T1.StateE or T1.StateD} : q 3uj 4uj 4uj 5uj

sup{T1.StateE or T1.StateD} : q 324uj 279uj 78uj 76uj

inf{T1.StateE } : T1.ptime 200000us 200000us 300000us 400000us

sup{T1.StateE } : T1.ptime 600000us 500000us 900000us 700000us
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• inf{T1.StateE} : T1.ptime

• sup{T1.StateE} : T1.ptime

Whereas ptime is a local clock in the T1 automaton, that we reset once we achieve

stability, i.e., StateE or StateI. Results for inf and sup query are shown in Table 3 with

the same parameters ranges considered for delivered energy analysis.

Amount of delivered energy and time analysis results are used to select DBS design

and parameters. A detailed depiction of how the energy and time varies with these

parameters is shown in Table 3 with different stimulation parameters ranges, i.e., f (Hz),

A (V) and PW (us). Table 3 shows the result of inf and sup queries (listed on the extreme

left side of the table) for both energy and time analysis with stimulation parameters

ranges mentioned on the top of the table. Table 3 clearly depicts the effect of these

parameters on delivered energy values, the higher the stimulation parameter values the

higher the delivered energy value is. Likewise, the time analysis strongly depends on

the selected parameters, the stimulation time keeps on increasing until parameters are

fine tuned to achieve the stability.

3.4 Reachability and Deadlock

Reachability properties are often used to ensure that some particular situation can be

reached. For example, when designing a model of a communication protocol involving

a sender and a receiver, it is quite desirable to know whether it is possible for the sender

to send a message at all or whether a message can possibly be received. In our design,

we intend to ask whether it is possible for the DBS to send stimulations to STN or to

achieve stability. We used the following properties to verify reachability requirement:
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• E<> T1.StateE

• E<> T1.StateD

• E<> T1.StateH

• E<> GPiComponent.GPiCell

Deadlock is a state in which progress is impossible. A state is termed as a deadlock

state if there are no outgoing action transitions neither from the state itself or any of

its delay successors.The ideal system/model should be deadlock free. The deadlock

property is used to verify that the system is deadlock-free as follows:

• A[] not deadlock

• E<> deadlock

We verified the above mentioned requirements for the DBS controller to ensure that

the system will never get stuck as it is a very important requirement for the real-time

systems, i.e., DBS in our case.

4 Case Study for DBS Design and Parameter Selection

In this section, we present a case study on analyzing open-loop and closed-loop DBS.

We show how our proposed models and properties in UPPAAL can be used to compare

these two types of controllers in term of energy efficiency. Our results demonstrate

that the closed-loop DBS outperforms the existing open-loop DBS in term of energy

efficiency. We also present an analysis of stimulation time for a given programming

algorithm to select the closed-loop DBS design parameters.
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4.1 Energy Efficiency comparison of open-loop and closed-loop DBS:

Electrical energy delivered per unit time (E) is calculated whenever stimulation is de-

livered to STN, i.e., Sp!, by using the following formula (Cagnan et al., 2017).

E[i] = (A ∗ A ∗ PW ∗ f)/impedance

Where i indicates the index number of the E array to calculate the electrical energy

delivered per unit time. We simulated the timed automaton of the open-loop DBS con-

troller with stimulation parameters based on the existing work (Cagnan et al., 2017),

i.e., A =1V, f =115Hz, impedance=1000Ω and PW =200us, for 292 iterations that is

approximately equal to 2.5s, as shown in Fig. 8. Due to fixed parameters, the delivered

energy value remains the same for the whole time and average amount of delivered en-

Figure 8: Graph representing the delivered electrical energy behavior of Open-loop

DBS Controller. Total delivered energy comes out to be 6716uj approximately and

average amount of delivered energy is approximately 23uj for 2.5s.
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ergy comes out to approximately 23uj.

In order to do a fair comparison between both controllers, we apply the same

methodology to the closed-loop DBS model with the same parameters, i.e., A=1V,

impedance=1000Ω, PW=200us, except the frequency variation as mentioned in the pre-

vious section. We simulated this closed-loop DBS timed automaton for 190 iterations

that is approximately equal to 2.5s, as shown in Fig. 9. Closed-loop DBS pattern can

easily be observed that it randomly selects any frequency from the given range and feed-

back its error signal, and achieves stability after some time. This behavior is randomly

simulated where both healthy and PD behavior are considered non-deterministically,

i.e., healthy behavior generated in [0-0.2s] and PD behavior generated in [0.3-0.9s] and

so on, as can be observed throughout the graph in Fig. 9. The average amount of deliv-

ered energy is approximately equal to 14.8uj.

Figure 9: Graph representing the delivered electrical energy behavior of Closed-loop

DBS Controller. Total delivered energy comes out to be 4485uj approximately and

average amount of delivered energy is approximately 14.8uj for 2.5s.
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As we know in closed-loop DBS, stimulations are only applied when PD is detected

in order to prolong the battery life. Open-loop and closed-loop DBS energy analysis is

made only for 2.5s, and it can be clearly observed that the closed-loop DBS outperforms

open loop DBS in terms of energy efficiency and thus prolongs the battery life.

4.2 Effect of closed-loop DBS programming algorithm:

There can be multiple programming algorithms even for the same hardware, so the se-

lection of an optimal algorithm for DBS can be a challenging task. As mentioned in our

design methodology, in Section IV, DBS delivers the stimulation of randomly selected

frequency and beta band power of that applied stimulation is calculated. After that, the

error is calculated, i.e., difference between the desired beta band power (reference sig-

nal) and calculated beta band power of the current stimulation (feedback signal). The

DBS controller keeps changing its stimulation frequency until the error is zero, i.e., sta-

bility is achieved.

The response of controller and the error correction scheme depends on the design

methodology. For this case study, we designed two different algorithms for error cal-

culation and DBS frequency updates which are named as Constant Update algorithm

and Error Prediction Update algorithm, respectively. We used the same parameters and

functions as mentioned in Section IV with just a different variation in feedback func-

tion, i.e., where the error is calculated and frequency is updated. In the Constant Update

algorithm, the DBS chooses random frequency stimulation according to the available

frequency range and the frequency is updated with a step size of 5 until the beta band

power of that signal becomes equal to the desired beta band power. By doing so, it
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Algorithm 1: In the Constant Update algorithm, the DBS selects a random frequency

for stimulation from the allowed permissible range and the frequency is updated with

a step size of 5 until the beta band power of that signal becomes equal to the desired

beta band power.

intfeedback()

{

if Beta Power ! = Desired Beta Power then

if f1 == 200 then

f1← 0

end if

f1← f1 + 5

else

err ← Desired Beta Power −Beta Power

f1← f1− err

end if

}

checks all the available frequency range with a step size of 5. For example, if the DBS

initially chooses randomly f=100Hz and if its beta band power is not equal to the de-

sired beta band power then it will update its frequency with an increment of 5 according

to Constant Update algorithm, and the new updated frequency will become f=105Hz.

After the frequency update, it again checks the beta band power of the updated fre-

quency stimulation and keeps on updating its frequency until stability is achieved, i.e.,

beta band power of that applied frequency signal becomes equal to the desired beta band

power.
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Algorithm 2: In the Error Prediction Update algorithm, the DBS selects a frequency

randomly from the available permissible range and the error is calculated based on the

beta band power. The stimulation frequency is then updated depending on the value of

error until stability is achieved.

intfeedback()

{

if Beta Power > Desired Beta Power then

err ← Beta Power −Desired Beta Power

f1← f1 + err

end if

if Desired Beta Power > Beta Power then

err ← Desired Beta Power −Beta Power

f1← f1− err

end if

if Desired Beta Power == Beta Power then

err ← Desired Beta Power −Beta Power

f1← f1− err

end if

}

In the Error Prediction Update algorithm, the DBS controller initially selects a fre-

quency randomly from the available permissible range and the error is calculated , i.e.,

difference between the desired beta band power and beta band power in response to the

applied signal. The frequency update depends upon the value of error as can be seen in

algorithm. 2, and the DBS keeps on updating the stimulation frequency until stability
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is achieved. A comparison of both cases is given in Table 4, with the same parameters,

i.e., A (V), PW (us), f (Hz) and impedance (Ω), for a fair comparison. We used inf and

sup queries for time analysis, i.e., to calculate the upper and lower bounds of time to

Properties f ∈ {90,140,190}Hz f ∈ {100,150,195}Hz f ∈ {80,130,185}Hz f ∈ {70,100,130}Hz

A = 1V A = 1V A = 1V A = 1V

PW = 100us PW = 100us PW = 100us PW = 100us

infT1.StateE : T1.ptime 200000us 300000us 200000us 200000us

supT1.StateE : T1.ptime 3300000us 3100000us 2400000us 700000us

(a) Constant Update algorithm

Properties f ∈ {90,140,190}Hz f ∈ {100,150,195}Hz f ∈ {80,130,185}Hz f ∈ {70,100,130}Hz

A = 1V A = 1V A = 1V A = 1V

PW = 100us PW = 100us PW = 100us PW = 100us

infT1.StateE : T1.ptime 200000us 300000us 200000us 200000us

supT1.StateE : T1.ptime 700000us 900000us 400000us 800000us

(b) Error Prediction Update algorithm

Table 4: Time Analysis of Constant Update algorithm and Error Prediction Update al-

gorithm. “Table. 4a and 4b” show the result of inf and sup queries with different

stimulation parameter ranges taken from (Cagnan et al., 2017) for Constant Update

algorithm and Error Prediction Update algorithm, respectively. From the overall com-

parison between these two algorithms, it can easily be observed that Error Prediction

Update algorithm takes less time to achieve stability as compared to Constant Update

algorithm but stability is not always guaranteed in Error Prediction Update algorithm

as compared to Constant Update algorithm.
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achieve stability.

It can be clearly observed that Constant Update algorithm takes more time to achieve

stability as compared to Error Prediction Update algorithm, because Constant Update

algorithm checks all frequency ranges until the stability is achieved while on the other

side Error Prediction Update algorithm just updates the frequency based on the error

and achieves stability in less time due to less number of iterations. In Constant Update

algorithm, stability is guaranteed because it checks all frequency combinations, but in

Error Prediction Update algorithm, stability is not always guaranteed because we can

never certainly say that the DBS will achieve the desired frequency or not, i.e., a large

error may lead to frequent frequency updates and may get stuck in a loop where it iter-

ates over a particular value and thus never gets out of it. So, Constant Update algorithm

takes more time to achieve stability but stability is always guaranteed, Error Prediction

Update algorithm takes less time to achieve stability but stability is not always guaran-

teed. These findings clearly indicate the usefulness of the proposed analysis of a given

algorithm for DBS time, i.e., maximum and minimum time to obtain stability, that can

help to design or select different DBS design parameters.

We also conducted the analysis for the amount of delivered energy for Constant

Update algorithm and Error Prediction Update algorithm. Delivered electrical energy

depends upon certain factors, i.e., A (V), PW (us), f (Hz) and impedance (Ω). The re-

sults in Table 3 clearly demonstrate how energy value varies by changing any of these

parameters. Table 3 simply depicts the effect of these parameters on energy values. As

mentioned previously, Constant Update algorithm takes more time to achieve stability

as compared to Error Prediction Update algorithm, which means stimulations are deliv-
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ered for a longer period of time in order to achieve stability, that in turn leads to more

power consumption for a specific time duration as compared to Error Prediction Update

algorithm. Hence, we can say that Error Prediction Update algorithm is best if we con-

sider the power aspect only, but at the same time stability is not always guaranteed in

Error Prediction Update algorithm, so there are pros and cons for both options and our

approach allows us to choose the best option according to the given requirements.

We analyzed the closed-loop DBS controller response rigorously with two different

error correction schemes, i.e, Constant Update algorithm and Error Prediction Update

algorithm, on a single platform with the same stimulation parameter settings, i.e., A (V),

PW (us), f (Hz) and impedance (Ω). To the best of our knowledge, we have never come

across any work like this, where two different error correction schemes/algorithms can

be compared on a single platform with the same stimulation parameter settings. There-

fore, these findings clearly indicate the usefulness of this platform that can then be used

to compare and choose different design algorithms of DBS according to the need and

given requirements.

5 Conclusion

In this paper, we presented a verification methodology to formally analyze the DBS

controllers for PD and to investigate the effects of design parameters on energy con-

sumption and timing analysis of DBS controllers. In order to verify the functionality

of closed-loop DBS controller, we developed a model of BG by abstracting the hybrid

automaton to timed automata. Thereafter, we developed a closed-loop DBS controller
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model and studied its behavior in response to BG model. We then formally verified the

closed-loop DBS controller requirements using TCTL properties, i.e., safety, liveness

and deadlock freeness. We also developed an open-loop DBS model to compare both

open and closed loop controllers in terms of energy efficiency and our results demon-

strate that the closed-loop DBS outperforms the open loop DBS in terms of energy

efficiency and prolongs the DBS battery life. To illustrate the effectiveness of the pro-

posed methodology, we analyzed two algorithms with nominal parameter values to see

their effect on DBS energy consumption or stimulation time. The analysis results are

found to be quite useful in the context of DBS programming algorithms and design pa-

rameters selection.
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