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Abstract

Two-dimensional (2D) image processing systems are concerned with the
processing of the images represented as 2D arrays and are widely used in
medicine, transportation and many other autonomous systems. The dynamics of
these systems are generally modeled using 2D difference equations, which are
mathematically analyzed using the 2D z-transform. It mainly involves a
transformation of the difference equations based models of these systems to their
corresponding algebraic equations, mapping the 2D arrays (2D discrete-time
signals) over the (z1,z2)-domain. Finally, these (z1,z2)-domain representations
are used to analyze various properties of these systems, such as transfer function
and stability. Conventional techniques, such as paper-and-pencil proof methods
and computer based simulation techniques for analyzing these filters cannot
assert the accuracy of the analysis due to their inherent limitations like human
error proneness, limited computational resources and approximations of the
mathematical expressions and results. In this paper, as a complimentary
technique, we propose to use formal methods, higher-order-logic (HOL) theorem
proving, for formally analyzing the image processing filters. These methods can
overcome the limitations of the conventional techniques and thus ascertain the
accuracy of the analysis. In particular, we formalize the 2D z-transform based on
the multivariate theories of calculus using the HOL Light theorem prover.
Moreover, we formally analyze a generic (L1, L2)-order 2D Infinite Impulse
Response (IIR) image processing filter. We illustrate the practical effectiveness of
our proposed approach by formally analyzing a second-order image processing
filter.

Keywords: Formal Analysis; 2D Image Processing Systems; 2D z-transform;
Theorem Proving; HOL Light; Higher-order Logic

Introduction
Two-dimensional (2D) image processing systems [1,2] typically involve image filter-

ing, editing, enhancement, compression and restoration of the images represented

as 2D arrays (2D discrete-time signals). Image processing filters [2] are the funda-

mental components of the 2D image processing systems that are widely used for

image filtering. These filters are categorized as high-pass, band-pass and low-pass

filters based on the passage of the allowable range of frequencies. For example, a

high-pass filter permits a range of frequencies greater than a certain threshold. More-

over, these filters are widely used in autonomous vehicles [3,4], and medicine [5]. For

example, they are used to perform various image processing tasks for controlling

the autonomous vehicles, such as noise reduction, color normalization, histogram

equalization and edge detection to enhance the quality of the images captured us-
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ing various devices such as Closed-circuit Television (CCTV) and webcams [6].

Similarly, they are widely used in medicine for performing various image pre and

post processing tasks, such as image quality enhancement, noise removal and image

smoothing [5].

The dynamics of these image processing systems are generally modeled using 2D

difference equations. Next, the 2D z-transform is used to mathematically analyze

these systems. It mainly involves a transformation of the difference equations based

models of these systems to their corresponding algebraic equations, using the def-

inition and various classical properties of the 2D z-transform, while mapping 2D

arrays over the (z1,z2)-domain. Finally, these (z1,z2)-domain representations are

used to analyze various properties of these image processing systems like transfer

function and stability [2].

Conventionally, the image processing filters have been analyzed using paper-and-

pencil proof techniques and computer based symbolic and numerical methods. How-

ever, in the former case, the analysis is error-prone due to the highly involved human

manipulation, particularly, for analyzing the larger and complex image processing

systems and thus we cannot ascertain an absolute accuracy of the analysis in this

approach. Similarly, the later approaches suffer from some of their inherent limi-

tations. For example, the symbolic methods involve a large number of unverified

symbolic procedures residing in the root of the associated tools [7]. Similarly, the

numerical techniques include a finite number of iterations due to the limited power

of the computing machines. Moreover, they are based on the mathematical results

that are approximated due to the finite precision arithmetic of computers. There-

fore, these conventional approaches cannot be trusted when analyzing the image

processing filters utilized in various safety-critical areas, such as autonomous driv-

ing and medicine.

Formal methods [8] are system analysis techniques that are based on developing

a mathematical model of the system using logic and verifying its various properties

using deductive reasoning. Higher-order-logic (HOL) theorem proving [9, 10] is a

widely utilized formal method for analyzing many safety-critical systems. In this

paper, we propose a HOL theorem proving based framework for analyzing the im-

age processing filters. In particular, we formalize the 2D z-transform based on the

multivariate theories of calculus using the HOL Light theorem prover [11]. The main

motivation of selecting HOL Light for the proposed formalization is the presence

of the fundamental libraries of multivariate calculus[1], vectors[2] and matrices[3],

which are required to formally analyze the 2D image processing systems.

Contributions of the Paper
The novel contributions of the paper are:

• Formalization of 2D z-transform and its Region of Convergence (ROC).

• Formal verification of various classical properties of 2D z-transform, such as lin-

earity, shifting in time-domain, scaling in (z1, z2)-domain and complex conjugation.

• Formal analysis of a generic (L1, L2)-order 2D IIR image processing filter.

• Formal analysis of a second-order image processing filter

[1]https://github.com/jrh13/hol-light/blob/master/Multivariate
[2]https://github.com/jrh13/hol-light/blob/master/Multivariate/vectors.ml
[3]https://github.com/jrh13/hol-light/blob/master/Multivariate/vectors.ml

https://github.com/jrh13/hol-light/blob/master/Multivariate
https://github.com/jrh13/hol-light/blob/master/Multivariate/vectors.ml
https://github.com/jrh13/hol-light/blob/master/Multivariate/vectors.ml
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Preliminaries
This section provides an introduction to the HOL Light theorem prover and the

formalization of some fundamental concepts from the multivariate calculus libraries

of HOL Light that facilitate the understanding of the rest of the paper.

HOL Light Theorem Prover

HOL Light [12] is a proof assistant for developing proofs of the mathematical con-

cepts written as theorems in higher-order logic. HOL Light is implemented in the

strongly-typed functional programming language ML [13]. A theorem is a state-

ment that is formalized as an axiom or can be implied from already verified theo-

rems using inference rules. Soundness is assured in a theorem proving environment

as every new theorem is verified using the primitive inference rules or any other

previously verified theorems. HOL Light provides an extensive support of theories,

such as Boolean algebra, arithmetic, real numbers, vectors and matrices, which are

extensively used in our formalization. Indeed, one of the motivations for selecting

the HOL Light theorem prover for the proposed framework is the availability of

extensive libraries of vectors and matrices.

Multivariable Calculus Theories in HOL Light

This section presents an introduction to some fundamental concepts formalized in

HOL Light, such as summability, infinite summation and vector summation, and

some HOL Light notations that help understanding the rest of the paper.

An N -dimensional vector in HOL Light is formalized as a RN column matrix cap-

turing individual elements as real numbers. All vector operations are then considered

as matrix manipulations. Most of the theorems in multivariable calculus theories

of HOL Light are proved for functions with an arbitrary data-type of RM → RN .

Similarly, complex numbers (C) can be described as R2 instead of defining a new

datatype. The HOL Light symbol &: N→ R represents an injection of natural num-

bers to real numbers. Similarly, the symbol Cx: R → C typecasts real numbers to

complex numbers. The symbols Re: C → R and Im: C → R represent the real and

imaginary components of a complex number, respectively. The HOL Light symbol %

captures the scalar multiplication of a vector or matrix. Similarly, a matrix-vector

multiplication is modelled as ∗∗ in HOL Light.

The generalized summation over an arbitrary function fn: A → RN is formalized

in HOL Light as follows:

Definition 1 Generalized Summation of Vector

⊢def ∀st fn. vecsum st fn = (lambda k. summ st (λx. fn x$k))

where vecsum accepts a set st: A → bool over which the summation occurs and a

function fn of data-type A → RN and returns a generalized vector summation over

the set st. Here, the HOL Light function summ provides a finite summation for a fn

over real numbers. For example, a mathematical expression
n∑

k=0

f(k) is described in

HOL Light as vecsum (0..n) fn.
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Definition 2 Summs

⊢def ∀st fn lt. (fn summs lt) st ⇔
((λn. vecsum (st INTER (0..n)) fn) → lt) sequentially

The HOL Light function summs accepts a set of natural numbers st: N → bool, a

function fn: N → RN and a limit value lt: RN and returns the traditional mathe-

matical expression
∞∑
k=0

f(k) = L. Here, INTER captures the intersection of two sets.

Similarly, sequentially represents a net providing a sequential growth of a function

f , i.e., f(k), f(k+1), f(k+2), ..., etc. This is mainly used in modeling the concept

of an infinite summation.

We provide the formalization of the summability of a function fn: N → RN over

st: N → bool, which ensures that there exist some limit value L: RN , such that
∞∑
k=0

f(k) = L in HOL Light as:

Definition 3 Summability of a Function

⊢def ∀fn st. summable fn st ⇔ (∃lt. (fn summs lt) st)

The limit of a function fn: A → RN is formalized as:

Definition 4 Limit of a Function

⊢def ∀net f. limt net fn = (∈lt. (fn → lt) net)

where the function limt takes a net with components of data-type A and a function

fn, and returns a limit value lt: RN to which fn converges at the given net. It is

formalized using the Hilbert choice operator ∈. Similarly, the concept tends to (→)

is formalized in HOL Light as:

Definition 5 Tends to

⊢def ∀fn lt net. (fn → lt) net ⇔
∀e. &0 < e ⇒ eventually (λx. dist (fn x, lt) < e) net

Now, we provide a formalization of an infinite summation, which is used in the

formal definition of the 2D z-transform presented in Section Formalization of 2D

z-Transform.

Definition 6 Infinite Summation of a Function

⊢def ∀fn st. inftsumm st fn = (∈lt. (fn summs lt) st)

where the HOL Light function inftsumm accepts st: num → bool specifying the

starting point and a function fn of data-type N→ RN , and returns a limit value lt:

RN to which the infinite summation of fn converges from the given st.

Next, we formally verify an equivalence of the infinite summation (Definition 6) to

its alternate form in terms of sequential limit as the following HOL Light theorem:

Theorem 1 Relationship Between Infinite Summation and the Sequential Limit

⊢thm ∀st fn. inftsumm st fn = limt sequentially (λk. vecsum (st INTER (0..k)) fn)
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Methods

Figure 1 depicts our proposed method for analyzing the image processing filters us-

ing HOL theorem proving. The user provides the 2D difference equations that mod-

els the dynamics of the image processing system, which needs to be analyzed. This

2D difference equation is modeled in higher-order logic using the multivariate cal-

culus theories of HOL Light. In the next step, we formalize the 2D z-transform that

is required for mathematically analyzing the image processing systems. It mainly

transforms the difference equations based models of these systems to their corre-

sponding algebraic equations, using the definition and various classical properties,

such as, linearity, shifting and scaling, of the 2D z-transform, while mapping 2D

arrays over the (z1,z2)-domain. Finally, these (z1,z2)-domain representations are

used to analyze various properties of these systems, such as transfer function and

the solution of the corresponding difference equations.

Higher-order Logic

Verified Transfer 
Functions

Formalization of 2D z-Transform

Verified Properties of ROC

Image Processing Systems

Multivariate 
Calculus 
Theories

Real Analysis

Transcendental

Vectors
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Formal 
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Figure 1: Proposed Framework

Results

Formalization of the 2D z-Transform

The 2D z-transform of a 2D discrete-time function (2D array) f(n1, n2) is mathe-

matically expressed as follows [2]:

F (z1, z2) =

∞∑
n1=0

∞∑
n2=0

f(n1, n2)z1
−n1z2

−n2 (1)
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where f is a function of type N → N → C, and z1 and z2 are complex variables.

The limits from 0 to ∞ make Equation (1) as a mathematical representation of

a unilateral 2D z-transform. We have opted for this representation based on the

same motivation that was considered for one-dimensional z-transform [14] and the

Laplace transform [15].

We formalize the 2D z-transform (Equation (1)) in HOL Light as follows:

Definition 7 2D z-Transform

⊢def ∀f z1 z2. z transform 2d f z1 z2 = inftsumm (from 0)

(λn1. inftsumm (from 0) (λn2. f n1 n2 / (z1 pow n1 ∗ z2 pow n2)))

where z transform 2d accepts a function of type N → N → C and two complex

variables z1: C and z2: C, and returns a complex number, which represents the 2D

z-transform of f: N→ N→ C according to Equation (1).

An essential issue with the applicability of the 2D z-transform of f(n1, n2) is the

existence of F (z1, z2) that occurs due to the presence of the infinite summations

in Equation (1). Thus, we need to identify conditions for the existence of the 2D

z-transform. A set of all those values of z1 and z2 for which the infinite summations

are converging and F (z1, z2) is finite (or summable) is known as the ROC. It is

mathematically expressed as follows:

ROC = z1, z2 ∈ C : ∃k.
∞∑

n1=0

∞∑
n2=0

f(n1, n2)z1
−n1z2

−n2 = k (2)

We formalize the ROC of the 2D z-transform as follows:

Definition 8 Region of Convergence (ROC)

⊢def ∀f n1. ROC 2d f n1 =

{(z1, z2) | ¬(z1 = Cx(&0)) ∧ ¬(z2 = Cx(&0)) ∧
z tr summable f z1 z2 n1 ∧ z tr td summable f z1 z2}

where, ROC 2d accepts a function f: N → N → C and n1 capturing the starting

point of the outer summation of the 2D z-transform (Equation (1)), and returns

a set of non-zero values of variables z1 and z2 for which the 2D z-transform of

f exists. It is necessary to specify the associated ROC 2d to compute the 2D z-

transform. Moreover, the functions z tr summable and z tr td summable capture the

summability of the function f for the inner and the outer (double) summations,

respectively, and are formalized in HOL Light as follows:

Definition 9 Summability of Function for Inner Summation

⊢def ∀f z n1. z tr summable f z1 z2 n1 =

(∀n1. summable (from 0) (λn2. f n1 n2 / (z1 pow n1 ∗ z2 pow n2)))

Definition 10 Summability of Function for Outer (Double) Summation

⊢def ∀f z1 z2. z tr td summable f z1 z2 = summable (from 0)

(λn1. inftsumm (from 0) (λn2. f n1 n2 / (z1 pow n1 ∗ z2 pow n2)))
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Moreover, we verify two fundamental properties of ROC, such as the linearity of

the ROC and scaling of the ROC, which are quite helpful for formally verifying

the classical properties of the 2D z-transform in Section Formal Verification of the

Classical Properties of the 2D z-Transform.

Theorem 2 Linearity of ROC

⊢thm ∀z1 z2 a b f g n1.

[A1]: (z1, z2) IN ROC 2d f n1 ∧ [A2]: (z1, z2) IN ROC 2d g n1

⇒ (z1, z2) IN ROC 2d (λn1 n2. a ∗ f n1 n2) n1 INTER

ROC 2d (λn1 n2. b ∗ g n1 n2) n1

Theorem 3 Scaling of ROC

⊢thm ∀z1 z2 a f n1. [A]: (z1, z2) IN ROC 2d f n1

⇒ (z1, z2) IN ROC 2d (λn1 n2. f n1 n2 / a) n1

Theorem 2 ensures that if (z1, z2) is inside ROC 2d f n1 and ROC 2d g n1 for

functions f and g then it is also inside the intersection of both ROCs for the scaled

version of these functions. Similarly, Theorem 3 provides the scaling property with

respect to the division by a complex number a.

Formal Verification of the Classical Properties of the 2D z-Transform

We use Definitions 7 and 8, and Theorems 2 and 3 for verifying some of the classical

properties of the 2D z-transform in HOL Light. This verification plays a vital role

in reducing the effort required for analyzing image processing systems, as described

later in Sections Formal Verification of a (L1, L2)-Order 2D Infinite Impulse Re-

sponse (IIR) Image Processing Filter and Formal Verification of a Second-Order

2D Image Processing Filter.

Linearity of the 2D z-Transform: The linearity of the 2D z-transform is mainly

used in decomposing complex (larger) systems to subsystems or combining smaller

systems to larger ones having different scaling inputs. It can be mathematically

expressed as:

If Z[f(n1, n2)] = F (z1, z2) and Z[g(n1, n2)] = G(z1, z2) then the following holds:

Z[α ∗ f(n1, n2)± β ∗ g(n1, n2)] = α ∗ F (z1, z2)± β ∗G(z1, z2) (3)

The 2D z-transform of a linear combination of 2D sequences (or arrays) is equal

to the linear combination of the 2D z-transform of the individual arrays. We verify

linearity property in HOL Light as:

Theorem 4 Linearity of the 2D z-Transform

⊢def ∀f g z1 z2 a b n1.

[A1]: (z1, z2) IN ROC 2d f n1 ∧ [A2]: (z1, z2) IN ROC 2d g n1

⇒ z transform 2d (λn1 n2. a ∗ f n1 n2 ± b ∗ g n1 n2) z1 z2 =

a ∗ z transform 2d f z1 z2 ± b ∗ z transform 2d g z1 z2
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where a: C and b: C are arbitrary complex constants. Assumptions A1 and A2

capture the regions of the convergence of functions f and g, respectively. The proof

of the above theorem is mainly based on Theorem 2 and the linearity of the infinite

summation alongwith some complex arithmetic reasoning.

Shifting Property of the 2D z-Transform: The shifting property of the 2D z-

transform is mostly used for analyzing the 2D Linear Shift Invariant (LSI) systems.

In particular, it is used to solve the difference equations capturing the dynamics of

these systems. The shifting property expresses the transform of the shifted signal

f(n1 −m1, n2 −m2) in terms of its 2D z-transform F (z1, z2).

If Z[f(n1, n2)] = F (z1, z2) and assuming f(−n1, n2) = 0, f(n1,−n2) = 0 and

f(−n1,−n2) = 0, ∀n1 = 1, 2, ...,m1 and ∀n2 = 1, 2, ...,m2, i.e., f(n1, n2) is non-

zero in the first quadrant only, then the shifting of a 2D array is mathematically

expressed as follows:

Z[f(n1 −m1, n2 −m2)] = z−m1
1 ∗ z−m2

2 ∗ F (z1, z2) (4)

We formally verify the above property in HOL Light as:

Theorem 5 Shifting in Time Domain

⊢thm ∀f z1 z2 m1 m2 n1.

[A1]: (z1, z2) IN ROC 2d f n1 ∧ [A2]: in fst quad 2d f

⇒ z transform 2d (λn1 n2. f (n1 - m1 n2 - m2)) z1 z2 =

z transform 2d f z1 z2 / (z1 pow m1 ∗ z2 pow m2)

where the function in fst quad 2d ensures that the function f is non-zero in the first

quadrant only and is formalized in a relational form, i.e., f (n1 - m1, n2 - m2),

∀m1 m2. m1 < n1, m2 < n2. The verification of Theorem 5 is mainly based on

the properties of complex numbers alongwith two properties regarding the negative

offset of series and infinite summation. More details about the proof process of this

theorem can be found in our proof script[4].

Scaling in (z1, z2)-domain Property of the 2D z-Transform: The scaling

property of the 2D z-transform results in shrinking or expansion of the (z1, z2)-

domain, i.e., 4D complex (z1, z2)-plane. If Z[f(n1, n2)] = F (z1, z2), then two differ-

ent types of scaling are defined as:

Z[h1
n1h2

n2f(n1, n2)] = F

(
z1
h1

) (
z2
h2

)
(5)

Z[w1
−n1w2

−n2f(n1, n2)] = F (w1z1) (w2z2) (6)

If h1 and h2 are positive real numbers, then the scaling is interpreted as expansion

of the 4D complex (z1, z2)-plane. On the other hand, multiplication by w1
−n1 and

w2
−n2 (Equation (6)) shrinks the (z1, z2)-domain.

We verify the above theorems in HOL Light as:

[4]https://github.com/adrashid/fa2Dipfholtp

https://github.com/adrashid/fa2Dipfholtp
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Theorem 6 Scaling in (z1, z2)-Domain (Positive/Expansion)

⊢thm ∀f z1 z2 n1 h1 h2.

[A1]: (inv h1 ∗ z1, inv h2 ∗ z2) IN ROC 2d f n1 ∧
[A2]: (z1, z2) IN ROC 2d f n1

⇒ z transform 2d (λn1 n2. h1 pow n1 ∗ h2 pow n2 ∗ f n1 n2) z1 z2 =

z transform 2d f (inv h1 ∗ z1, inv h2 ∗ z2)

Theorem 7 Scaling in (z1, z2)-Domain (Negative/Shrinking)

⊢thm ∀f z1 z2 n1 w1 w2.

[A1]: (w1 ∗ z1, w2 ∗ z2) IN ROC 2d f n1 ∧
[A2]: (z1, z2) IN ROC 2d f n1

⇒ z transform 2d (λn1 n2. w1 pow (-n1) ∗ w2 pow (-n2) ∗ f n1 n2) z1 z2 =

z transform 2d f (w1 ∗ z1) (w2 ∗ z2)

Complex Conjugation Property of the 2D z-Transform: The complex con-

jugation property facilitates an easy manipulation of the 2D z-transform of conju-

gated arrays. It is mathematically expressed as follows:

Z[f∗(n1, n2)] = F ∗(z1
∗, z2

∗) (7)

where f∗(n1, n2) represents the complex conjugate of an array f(n1, n2). The cor-

responding formalization of the complex conjugation property in HOL Light is given

as follows:

Theorem 8 Complex Conjugation

⊢thm ∀f z1 z2 n1. [A]: (cnj z1, cnj z2) IN ROC 2d f n1

⇒ z transform 2d (λn1 n2. cnj (f n1 n2)) z1 z2 =

cnj (z transform 2d f (cnj z1, cnj z2))

Formal Verification of a (L1, L2)-Order 2D Infinite Impulse Response (IIR) Image

Processing Filter

2D digital filters [1] are integral components of the image processing systems. Their

main responsibility includes the decomposition of an image to multiple frequency

bands, restricting a 2D array/signal to a certain frequency band and providing the

input-output relationship of these systems. For example, a low-pass filter allows

a range of frequencies less than a certain threshold [2]. The analysis of an image

processing filter mainly involves developing its mathematical model using a 2D

difference equation. The next step is to apply 2D z-transform on both sides of the

difference equation. Finally, the definition and the classical properties of the 2D

z-transform are used to perform transfer function based analysis of the given filter.

The impulse response of a discrete-time system captures its behaviour for the sce-

nario when dirac-delta function is acting as an input array [2]. 2D image processing

Infinite Impulse Response (IIR) filters have a non-zero impulse response function

over an infinite length of time. For these filters, the present output depends on the

present input and all previously computed input and output values.

Mathematically, the 2D image processing filters are described using the following

difference equation [16].
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y(n1, n2) =

L1−1∑
l1=0

L2−1∑
l2=0

α(l1, l2)x(n1 − l1, n2 − l2)

−
K1−1∑
k1=1

K2−1∑
k2=1

β(k1, k2)y(n1 − k1, n2 − k2)

(8)

where α(l1, l2) and β(k1, k2) are input and output coefficients, respectively. The

output array y(n1, n2) is a linear combination of the previous K1 − 1 and K2 − 1

output samples, the present input x(n1, n2)), and L1 − 1 and L2 − 1 previous in-

put samples. Moreover, for the shift-invariant filter, α(l1, l2) and β(k1, k2) are the

complex constants (C). Therefore, Equation (8) is known as a Linear Constant Coef-

ficient Difference Equation (LCCDE). The 2D z-transform of a (L1, L2)
th

difference

represented in the form of f(n1, n2) is given as:

Z

[
L1−1∑
l1=0

L2−1∑
l2=0

α(l1, l2)f(n1 − l1, n2 − l2)

]
= F (z1, z2)

L1−1∑
l1=0

L2−1∑
l2=0

α(l1, l2)z1
−l1z2

−l2

(9)

The corresponding transfer function of the 2D IIR filter is mathematically ex-

pressed as [16]:

H(z1, z2) =
Y (z1, z2)

X(z1, z2)
=

L1−1∑
l1=0

L2−1∑
l2=0

α(l1, l2)z1
−l1z2

−l2

K1−1∑
k1=0

K2−1∑
k2=0

β(k1, k2)z1−k1z2−k2

(10)

To formally verify the transfer function of the 2D filter (Equation (10)), we for-

malize the (L1, L2)
th

difference as follows:

Definition 11 Formalization of the (L1, L2)
th

Difference

⊢def ∀f c L1 L2 n1 n2.

l1l2th difference f c L1 L2 n1 n2 =

vecsum (0..L1) (λl1. vecsum (0..L2) (λl2. c l1 l2 ∗ f (n1 - l1) (n2 - l2)))

The function l1l2th difference accepts a function f: N → N → C, coefficients of

the difference equation c l1 l2, the order (L1, L2) of the 2D difference equation and

the variables n1 and n2, and returns the (L1, L2)
th difference. It uses the function

vsum s f twice to capture the double summation.

Next, we formalize a general LCCDE (Equation (8)) as follows:

Definition 12 Formalization of the LCCDE

⊢def ∀y x M1 M2 N1 N2 n1 n2 a b. LCCDE x y a b M1 M2 N1 N2 n1 n2 ⇔
y (n1, n2) = l1l2th difference y a M1 M2 n1 n2 - l1l2th difference x b N1 N2 n1 n2

Next, we verify the 2D z-transform of the (L1, L2)
th difference (Equation (9)) as:
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Theorem 9 The 2D z-Transform of the (L1, L2)
th Difference

⊢thm ∀f c L1 L2 z1 z2 n1.

[A1]: (z1, z2) IN ROC 2d f n1 ∧
[A2]: in fst quad 2d f

⇒ z transform 2d (λn1 n2. l1l2th difference f c L1 L2 n1 n2) z1 z2 =

z transform 2d f z1 z2 ∗ vecsum (0..L1)

(λl2. vecsum (0..L2) (λl1. z1 cpow - Cx (&l1) ∗ z2 cpow - Cx (&l2) ∗ c l1 l2))

where Assumption A1 ensures that (z1, z2) are in the region of convergence of the

function f. Assumption A2 implies that the function f is in the first quadrant.

Finally, the conclusion provides the 2D z-transform of the (L1, L2)
th difference.

The verification of the above theorem is mainly based on induction on N1 and N2,

and Theorems 2 and 4 alongwith the following lemma about the summability of

(L1, L2)
th difference equation.

Lemma 1 Summability of the (L1, L2)
th Difference

⊢thm ∀f c L1 L2 z1 z2 n1.

[A1]: (z1, z2) IN ROC 2d f n1 ∧
[A2]: in fst quad 2d f

⇒ (z1, z2) IN ROC 2d (λn1 n2. l1l2th difference f c L1 L2 n1 n2) n1

To verify the transfer function of the 2D filter (Equation (10)), we have to ensure

that the 2D input and output arrays exist in the first quadrant only. Moreover,

the denominator of Equation (10) should be non-zero. We formalize both these

requirements in HOL Light as follows:

Definition 13 First Quadrant Input and Output 2D Arrays for LCCDE

⊢def in fst quad 2d lccde x y ⇔ in fst quad 2d x ∧ in fst quad 2d y

Definition 14 ROC LCCDE

⊢def ∀ x y K1 K2 lst n1 ROC 2d LCCDE x y K1 K2 lst n1 =

(ROC 2d x n1) INTER (ROC 2d y n1) DIFF

{(z1, z2) | vecsum (0..K1) (λk2. vecsum (0..K2)

(λk1. z1 cpow - Cx (&k1) ∗ z2 cpow - Cx (&k2) ∗ EL k1 lst)) = Cx (&0)} DIFF

{(z1, z2) | z transform 2d x z1 z2 = Cx (&0)}

where, the function in fst quad 2d lccde (Definition 13) accepts the input and out-

put 2D arrays x and y and asserts the first quadrant condition for both arrays.

Similarly, ROC 2d LCCDE (Definition 14) provides the ROC of the input and out-

put 2D arrays. It uses the HOL Light function DIFF to exclude all values of the

denominator, where the transfer function of the 2D IIR filter becomes undefined.

Now, we provide the formal verification of the transfer function of a 2D IIR filter

in HOL Light as follows:

Theorem 10 Transfer Function of a 2D IIR Filter

⊢thm ∀x y a b L1 L2 K1 K2 z1 z2 n1.
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[A1]: (z1, z2) IN ROC 2d LCCDE x y K1 K2 blst n1 ∧
[A2]: in fst quad 2d lccde x y ∧
[A3]: (∀n1 n2. LCCDE x y a b L1 L2 K1 K2 n1 n2)

⇒ z transform 2d y z1 z2 / z transform 2d x z1 z2 =

vecsum (0..K1) (λk2. vecsum (0..K2)

(λk1. z1 cpow - Cx (&k1) ∗ z2 cpow - Cx (&k2) ∗ a k1 k2)) /

vecsum (0..L1) (λl2. vecsum (0..L2)

(λl1. z1 cpow - Cx (&l1) ∗ z2 cpow - Cx (&l2) ∗ b l1 l2))

Assumption A1 provides the ROC for LCCDE. Assumption A2 ensures that the

input and output 2D arrays are in the first quadrant. Assumption A3 captures the

time-domain model of the 2D IIR filter, i.e., the LCCDE (Equation (8)). Finally,

the conclusion presents the transfer function of the 2D IIR filter. The proof process

of the above theorem is based on the linearity and shifting properties of the 2D z-

transform (Theorems 4 and 5), summability of the (L1, L2)
th difference (Lemma 1)

alongwith some complex arithmetic reasoning. Theorem 10 provides the transfer

function of a generic 2D IIR image processing filter and is quite useful in the veri-

fication of the second-order 2D medical image processing filter described in Section

Formal Verification of a Second-Order 2D Image Processing Filter.

Formal Verification of a Second-Order 2D Image Processing Filter

To illustrate the practical utilization and effectiveness of the proposed formalization

of the 2D z-transform, we apply it to formally analyze a second-order image process-

ing filter that is widely used for performing various tasks, such as noise removal [1],

image smoothing [2] and quality enhancement [5].

A second-order image processing filter is graphically represented by the flowgraph

given in Figure 2. A flowgraph is a collection of branches (directed connections) and

nodes (input and output 2D arrays), where nodes are connected using branches. The

constants c01, c10, c11, c02, c12, c20, c21 and c22 in Figure 2 represent the gains of

each branches. Whereas, z1
−1 and z2

−1 present the shift right (horizontal delay) and

shift up (vertical delay) operations, respectively. We can mathematically describe

this filter using the following linear difference equation.

y(n1, n2) = x(n1, n2) +

2∑
k1=0

2∑
k2=0

ck1k2
y(n1 − k1, n2 − k2),

(k1, k2) ̸= 0

(11)

Alternatively, Equation (11) can be represented as:

y(n1, n2) =x(n1, n2) + c01y(n1, n2 − 1) + c10y(n1 − 1, n2)+

c11y(n1 − 1, n2 − 1) + c02y(n1, n2 − 2)+

c12y(n1 − 1, n2 − 2) + c20y(n1 − 2, n2)+

c21y(n1 − 2, n2 − 1) + c22y(n1 − 2, n2 − 2)

(12)

The transfer function corresponding to the difference equation based model (Equa-

tion (11)) is given as:
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x (n1, n2) y (n1, n2)1

z1
-1

z1
-1 z2

-1

z2
-1

y (n1, n2-1)

y (n1, n2-2)
c22

c12

c02

c21

c11

c01

c20

c10

Figure 2: Flowgraph of a Second-order Image Processing Filter

H(z1, z2) =
Y (z1, z2)

X(z1, z2)
=

1

1−
2∑

n1=1

2∑
n2=1

cn1n2
z1−n1z2−n2

, (k1, k2) ̸= 0
(13)

Alternatively, the above equation can be represented as:

H(z1, z2) =
1

1− c01z2
−1 − c10z1

−1 − c11z1
−1z2

−1

−c02z2
−2 − c12z1

−1z2
−2 − c20z1

−2

− c21z1
−2z2

−1 − c22z1
−2z2

−2

(14)

To verify the transfer function expressed in Equation (13), we need to formalize

the difference equation based model of the filter (Equation (11)), which is given in

HOL Light as:

Definition 15 Difference Equation Based Model of the Second-Order Filter

⊢def ∀y x n1 n2 a b. second order filter x y a b n1 n2 ⇔
y (n1, n2) = l1l2th difference y a 2 2 n1 n2 - l1l2th difference x b 0 0 n1 n2

where a and b are the coefficients of input and output 2D arrays. The function

second order filter accepts input and output 2D arrays, their coefficients a and b and

returns the linear difference equation describing the second-order image processing

filter.

Now, we formally verify the transfer function (Equation (13)) in HOL Light as

follows:

Theorem 11 Transfer Function of a Second-Order Filter

⊢thm ∀x y a b z1 z2 n1 c11 c12 c21 c22.

[A1]: (z1, z2) IN ROC 2d LCCDE x y 2 2 b n1 ∧
[A2]: in fst quad 2d lccde x y ∧
[A3]: cond 2d diff eq coeff a b b01 b10 b11 b02 b12 b20 b21 b22 ∧
[A4]: ¬(z1 = Cx (&0)) ∧
[A5]: ¬(z2 = Cx (&0)) ∧
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[A6]: (∀n1 n2. second order filter x y a b n1 n2)

⇒ z transform 2d y z1 z2 / z transform 2d x z1 z2 =

Cx (&1) / (Cx (&1) - b01 ∗ z2 cpow - Cx (&1) - b10 ∗ z1 cpow - Cx (&1) -

b11 ∗ z1 cpow - Cx (&1) ∗ z2 cpow - Cx (&1) - b02 ∗ z2 cpow - Cx (&2) -

b12 ∗ z1 cpow - Cx (&1) ∗ z2 cpow - Cx (&2) - b20 ∗ z1 cpow - Cx (&2) -

b21 ∗ z1 cpow - Cx (&2) ∗ z2 cpow - Cx (&1) -

b22 ∗ z1 cpow - Cx (&2) ∗ z2 cpow - Cx (&2))

Assumption A1 provides the ROC for the differential equation based model of the

second-order filter. Assumption A2 ensures that the input and output 2D arrays x

and y are in the first quadrant. Assumption A3 asserts that the input and output

coefficients are constant. Assumptions A4 and A5 ensure that the complex variables

z1 and z2 are non-zero. Assumption A6 captures the time-domain model of the

second-order filter, i.e., Equation (11). Finally, the conclusion presents the transfer

function of the second-order filter. The verification of the above theorem is mainly

based on Theorem 10 alongwith some complex arithmetic reasoning. Theorem 11

is the formal verification result of the second-order image processing filter based on

our formalization of the 2D z-transform described in Sections Formalization of 2D

z-Transform and Formal Verification of the Properties of the 2D z-Transform.

Now, a specialized case of a second-order image processing filter is graphically

represented by the flowgraph given in Figure 3. This filter can be mathematically

represented, by setting the values of the gains of each branches as c01 = c11 = c20 =

c21 = c22 = 0, c10 = 1
4 , c02 = − 1

4 and c12 = 1
4 in Equation (11), as follows.

x (n1, n2) y (n1, n2)1

z1
-1

z2
-1

z2
-1

y (n1, n2-1)

y (n1, n2-2)

1
4
_1
4
_

1
4
_1
4
_

_ 1
4
_1
4
__ 1
4
_

Figure 3: Flowgraph of a Specialized Second-order Image Processing Filter

y(n1, n2) = x(n1, n2) +
1

4
y(n1 − 1, n2)−

1

4
y(n1, n2 − 2) +

1

4
y(n1 − 1, n2 − 2) (15)

The transfer function corresponding to the difference equation based model (Equa-

tion (15)) is described as:

H(z1, z2) =
Y (z1, z2)

X(z1, z2)
=

1

1− 1
4z1

−1 + 1
4z2

−2 − 1
4z1

−1z2−2
(16)

We formally verify the transfer function (Equation (16)) as:
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Theorem 12 Transfer Function of a Specialized Second-Order Filter

⊢thm ∀x y c d z1 z2 n1.

[A1]: (z1, z2) IN ROC 2d LCCDE spec x y 2 2 b n1 ∧
[A2]: in fst quad 2d lccde spec x y ∧
[A3]: ¬(z1 = Cx (&0)) ∧
[A4]: ¬(z2 = Cx (&0)) ∧
[A5]: (∀n1 n2. second order filter spec x y c d n1 n2)

⇒ z transform 2d y z1 z2 / z transform 2d x z1 z2 =

Cx (&1) / (Cx (&1) - (1 / 4) ∗ z1 cpow - Cx (&1) +

(1 / 4) ∗ z2 cpow - Cx (&2) -

(1 / 4) ∗ z1 cpow - Cx (&1) ∗ z2 cpow - Cx (&2))

Assumption A1 captures the ROC for the differential equation based model of the

specialized second-order filter. Assumption A2 asserts the first quadrant conditions

on the input and output 2D arrays x and y. Assumptions A3 and A4 ensure that

the complex variables z1 and z2 are non-zero. Assumption A5 presents the time-

domain model of the specialized second-order filter, i.e., Equation (15). Finally, the

conclusion captures the transfer function of the specialized second-order filter. The

verification of the above theorem is done almost automatically using Theorem 11,

which illustrates the effectiveness of our proposed approach.

Figure 4: Root Map for the Specialized Second-order Filter

Next, we implement the transfer function of the specialized second-order filter,

verified as Theorem 12, in Python. In particular, we implemented the poles (de-

nominator of Equation (16)) of the transfer function, i.e., the characteristic equation

1− 1
4z1

−1+ 1
4z2

−2− 1
4z1

−1z2
−2 = 0 on the complex plane z2 for z1 = eiω1 , ω1 ∈ [0, π].

Figure 4 provides the root map capturing the poles of the transfer function and their

placement with respect to unit circle in the complex plane can be used for analyzing

the 2D stability of the corresponding system. In the case of the specialized second-

order filter (Figure 4), the presence of poles inside the unit circle provide a sufficient

condition for the stability of the corresponding system. However, in case of poles

outside the unit circle, the corresponding system will be unstable. Similarly, the
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one-dimensional (1D) stability can be analyzed by implementing the characteristic

equation for all z1 with z2 = 1 and observing the placement of the poles in the

complex z1 plane.

Discussions
The distinguishing feature of our proposed framework, as compared to the tradi-

tional analysis techniques is that all verified theorems are of generic nature, i.e., all

of the functions and variables involved in these theorems are universally quantified

and thus can be specialized based on the requirement of the analysis of the image

processing filter of any order. For example, Theorem 10 provides the verification of

the transfer function of a generic (L1, L2)-order 2D IIR image processing filter and

it can be directly used for analyzing an image processing filter of any order, such

as, second order filter (Theorems 11 and 12). We only need to specialize the gains

(α(l1, l2), β(k1, k2) in Equations (8), (9) and (10)) of an image processing filter

based on a particular scenario. Whereas, in the case of computer based simulations,

we need to model each filter based on its corresponding order, individually that

can add a lot of complexity for the case of higher-order filters. Thus, the generic

nature of the formalized theorems in our proposed approach makes it better than

the transitional analysis methods. Another advantage of our proposed approach is

the inherent soundness of the theorem proving technique. It ensures that all the

required assumptions are explicitly present alongwith the theorem, which are of-

ten ignored in the conventional simulations based analysis and their absence may

affect the accuracy of the corresponding analysis. For example, for a given system

(second-order image processing filter), if we do not incorporate the constraints cap-

tured as Assumptions A3, A4 and A5 of Theorem 11 and Assumptions A3 and A4

of Theorem 12, it may lead to some undesired results, such as, it may result into

a transfer function that can make a stable system as an unstable system. One of

the main limitations of the proposed approach is the significant user involvement

in the proposed formalization of z-transform, due to the undecidable nature of the

higher-order logic. However, we have developed simplifiers, such as ROC SIMP TAC,

DIFF EQ SIMP TAC and TRANS FUN TAC that significantly reduce the user guid-

ance in the reasoning process. More details of the proof process can be viewed in

our proof script[5].

Conclusions
2D image processing systems include processing of the images, such as image filter-

ing, enhancement, compression and restoration. These systems are typically ana-

lyzed using the 2D z-transform. This paper proposed a HOL theorem proving based

framework for formally analyzing 2D image processing filters. In particular, we for-

malized the 2D z-transform and formally verified its various classical properties,

such as linearity, shifting in time, scaling in (z1, z2)-domain and complex conju-

gation. Moreover, we formally analyzed a generic 2D IIR image processing filter.

Finally, to demonstrate the practical utilization and effectiveness of the proposed

framework, we presented the formal analysis of a second-order image processing

filter.

[5]https://github.com/adrashid/fa2Dipfholtp

https://github.com/adrashid/fa2Dipfholtp
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In future, we aim to formalize the 2D inverse z-transform [16] that will enable us

to find the time-domain solutions of the time-domain models of the image processing

systems. Another future direction is to formalize the 2D convolution [2] that can

greatly simplify the reasoning about systems-of-systems [16].
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