
Under consideration for publication in Formal Aspects of Computing

Formal Verification of Robotic Cell
Injection Systems up to 4-DOF using
HOL Light

Adnan Rashid and Osman Hasan

School of Electrical Engineering and Computer Science (SEECS)

National University of Sciences and Technology (NUST)

Islamabad, Pakistan

Abstract. Cell injection is an approach used for the delivery of small sample substances into a biological
cell and is widely used in drug development, gene injection, intracytoplasmic sperm injection (ICSI) and
in-vitro fertilization (IVF). Robotic cell injection systems provide the automation of the process as opposed
to the manual and semi-automated cell injection systems, which require expert operators and involve time
consuming processes and also have lower success rates. The automation of the cell injection process is
obtained by controlling the orientation and movement of its various components, like injection manipulator,
microscope etc., and planning the motion of the injection pipette by controlling the force of the injection. The
conventional techniques to analyze the cell injection process include paper-and-pencil proof and computer
simulation methods. However, both these techniques suffer from their inherent limitations, such as, proneness
to human error for the former and the approximation of the mathematical expressions involved in the
numerical algorithms for the latter. Formal methods have the capability to overcome these limitations and can
provide an accurate analysis of these cell injection systems. Model checking, i.e., a state-based formal method,
has been recently used for analyzing these systems. However, it involves the discretization of the differential
equations capturing the continuous dynamics of the system and thus compromises on the completeness of
the analysis of these safety-critical systems. In this paper, we propose a higher-order-logic theorem proving
(a deductive-reasoning based formal method) based framework for analyzing the dynamical behavior of the
robotic cell injection systems upto 4-DOF. The proposed analysis, based on the HOL Light theorem prover,
enabled us to identify some discrepancies in the simulation and model checking based analysis of the same
robotic cell injection system.
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1. Introduction

Cell injection is a microbiological procedure that allows delivering small and precise amounts of substances,
i.e., proteins, bio-molecules, genes and sperms, into the adherent or suspended cells. It is widely adopted in
drug development [NFT+98], gene injection [KK04], in-vitro fertilization (IVF) [SN02] and intracytoplasmic
sperm injection (ISCI) [YKY+99]. For example, it is used for the the treatment of infertility in IVF, by
injecting the sperm into matured eggs. Similarly, drug development includes injecting drugs into a cell and
observing its implications at the cellular level.

Robotic cell injection systems are designed to automatically perform the task of cell injection as opposed
to the conventionally used manual and semi-automated injection methods, which involve time-consuming
processes and require trained operators, and also have lower success rates. The most vital parameters of
a robotic cell injection system are the coordinate frames, capturing the orientation and movement of its
various components, such as, the injection manipulator, sensors, digital cameras and microscope, and the
force controlling the injection pipette [HSM+09]. A slight error in the orientation and movement of these
components may result in injection into an undesired part of the cell. Similarly, a slight excessive force may
damage the membrane of the cell [HSML06] or an insufficient force may not be able to pierce the cell [FN16].
Thus the accuracy of the orientation and movement of these fundamental components and the injection force
is pivotal for a reliable robotic cell injection system. Therefore, the robotic cell injection system designs need
to be analyzed quite carefully to ensure that the final system exhibits all these requirements.

Robotic cell injection systems are generally categorized into three types, namely 2-DOF, 3-DOF and 4-
DOF, based on the degree of freedoms (DOF) of the cell injection manipulator that is mounted on the motion
stage and controls the motion of the injection pipette. For example, a 2-DOF robotic cell injection system
involves the movement of the cell injection manipulator in a single plane (horizontal/vertical), 2-dimensions
(x, y), only. Whereas, the 3-DOF systems adds an extra degree of freedom for the motion stage of the
robotic cell injection system, allowing the translation of the system’s components in the third dimension and
thus contributes to the movement of components along z-axis in addition to the x and y axes. Similarly,
4-DOF system adds another degree of freedom for the motion stage by extending the coordinate frames from
3-dimensional (x, y, z) to 4-dimensional (x, y, z, θ) coordinates. Therefore, the fourth dimension provides
the rotation of the system’s components along θ in addition to their translation along the x, y and z axes.

The first step for analyzing a robotic cell injection system involves modeling the coordinate frames corre-
sponding to the orientations of its various components, i.e, cameras, images and the injection manipulator.
This model enables us to capture the movement and thus the positions of these components during the cell
injection procedure. Moreover, the relationship between these coordinates provides the relative positions of
these components, which is an essential part of a complete and successful cell injection procedure. Next, to
carry out the process of the cell injection, the motion planning of the injection pipette is modeled using some
force control algorithms, such as the contact-space-impedance force [SL97, HSM+09] and the image-based
torque controllers [HSML06]. Contact-space-impedance force is a combination of impedance control and the
vision-based injection force estimation and results in a hybrid impedance control method. This impedance
control is responsible for the desired dynamics of a system, which are obtained by controlling the correspond-
ing impedance to a desired value. Similarly, the image-based torque controller is mainly based on the input
torques of the driving motors. These controllers capture the overall dynamics of the system and are mainly
responsible for the successful process of cell injection and smooth functionality of the overall system.

Conventionally, robotic cell injection systems have been analyzed using paper-and-pencil proof methods.
However, these manual analysis techniques are prone to human error and do not scale well to complex models.
Moreover, in some cases, not all the necessary assumptions are recorded in the mathematical analysis, which
may lead to an erroneous design and analysis. Similarly, the computer based numerical and simulations-
based techniques have been utilized for analyzing these systems. However, due to the involvement of the
continuous-time (differential equation based) models of the system in the analysis and the limited amount of
computer memory and the computational resources, the analysis is carried out for a certain number of test
cases only and thus absolute accuracy cannot be obtained. Computer algebra systems, such as Maple [Map20]
and Mathematica [Mat20], have also been used for the analysis of these systems [NS94]. However, the core
of these systems contains unverified symbolic algorithms [DPV13], which compromises the accuracy of these
analyses. Due to the safety-critical nature of robotic cell injection systems, the above-mentioned conventional
methods cannot be trusted as they are either prone to error or incomplete, which may result in an undetected
error in the analysis that may in turn lead to disastrous consequences.

Formal methods [HT15] are computer-based mathematical analysis techniques that can overcome the
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above-mentioned inaccuracies. Primarily, these techniques involve the development of a mathematical model
of the given system and verification of its properties using computer-based mathematical reasoning. There are
mainly two types of formal methods, i.e., probabilistic model checking [CGP99, BDA95] and higher-order-
logic theorem proving [Har09, Gor88] that have been used in this context. Probabilistic model checking
involves the development of a state-space based probabilistic model of the underlying system and the formal
verification of its intended properties that are specified in temporal logic. It has been used by Sardar et
al. [SH17] for analyzing the robotic cell injection systems. Similarly, Ayub et al. [AH17] performed the prob-
abilistic analysis of a virtual fixture control algorithm for a Al-Zahrawi surgical robot and formally verified
the reachability, out-of-boundary problem and deadlock freedom properties using PRISM model checker.
However, the formal models used in these model checking based works involve discretization of the differen-
tial equations that are used for modeling the dynamics of these systems, which compromises the accuracy
of the corresponding analysis. Moreover, due to the inherent state-space explosion problem [CKNZ12], the
formal model of the cell injection system cannot be completely analyzed in a model checker. Bresolin et
al. [BGM+15] verified the control system properties of the autonomous robotic systems. The authors devel-
oped a hybrid automaton model of the system and performed the reachability analysis of the robotic surgery
tasks using ARIADNE, which is based on Taylor expansion approximations for an efficient manipulation
of functions in the Euclidean space. Kouskoulas et al. [KRPK13] formally analyzed a control algorithm for
surgical robots and formally proved its safe operation for all possible inputs using KeYmaeraD, which is a
theorem prover for analyzing distributed hybrid systems. The authors considered non-linear damping factors
while analyzing the control algorithm. In the dynamical model of the underlying system, the matrix G repre-
sents the scaling factor and generally consists of non-linear (exponential) terms. However, the authors have
taken it as constant in their proposed framework. Also, the corresponding differential equations are linear
differential equations with variables coefficients. However, this analysis is based on the differential dynamic
logic, and cannot capture all the continuous aspects of the given model in their true form. Higher-order-
logic theorem proving [Har09] is an interactive verification method that can overcome these limitations. It
primarily involves developing a mathematical model of the system based on higher-order logic and verifica-
tion of its properties using deductive reasoning. Given the high expressiveness of higher-order logic, it can
completely capture the behavior of the differential equations, which is not achievable in the models used in
probabilistic model checking based analysis. Rashid et al. [RH17, RH18] recently used this technique for the
formal verification of the same robotic cell injection system. However, the focus of that work was limited to
the 2-DOF robotic cell injection systems only.

In this paper, we propose a higher-order-logic theorem proving framework, depicted in Fig. 1, for for-
mally analyzing the robotic cell injection systems [HSML06] upto 4-DOF using the HOL Light theorem
prover [Har96b]. The main motivation for opting for HOL Light is the availability of foundational libraries
of multivariate calculus [hol20a], real calculus [hol20b], vectors [hol20d] and matrices [hol20d], which are
some of the foremost requirements to formally reason about the robotic cell injection systems. Moreover,
in comparison to Kouskoulas et al.’s work [KRPK13], described above, our proposed framework is based
on higher-order logic and thus caters for the continuous dynamics, modeled using the linear differential
equations with constant coefficients, of the robotic cell injection system.

The major contributions of the paper are:

• Formalization of the robotic cell injection systems, force and torque controllers along with the differential
equations based functional models, capturing the dynamical behavior (dynamics of the motion stage upto
4-DOF) of these systems and formal verification of their analytical solutions.

• Formalization of the coordinate frames, which involves the formal modeling of camera, image and stage
coordinates and formal verification of their interrelationships.

• Formal verification of the motion planning of the injection pipette, which includes the formal modeling
of the two-dimensional (2D) and three-dimensional (3D) contact-space-impedance force and the image-based
torque controllers and formal verification of their relationships.

• Identification of the discrepancies in the simulation and model checking based analysis of these systems.

The source code of our HOL Light development is available for download at [Ras20] and thus can be used
by other researchers and cell biologists interested in the design and verification of the robotic cell injection
systems.

The rest of the paper is organized as follows: Section 2 presents an introduction to the HOL Light theorem
prover, multivariate calculus theories of HOL Light and the robotic cell injection system. We provide the
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Fig. 1. Proposed Framework

formalization of the robotic cell injection system in Section 3. Section 4 presents the formalization of motion
planning of the injection pipette. This also includes the identification of the discrepancies in the simulation
and model checking based analysis of the same system. Finally, Section 5 concludes the paper.

2. Preliminaries

This section presents an introduction to the HOL Light theorem prover, multivariate calculus theories of
HOL Light and the robotic cell injection system.

2.1. HOL Light Theorem Prover

HOL Light [Har96a] is an interactive theorem proving environment for conducting proofs in higher-order
logic. The logic in the HOL Light system is represented in the strongly-typed functional programming lan-
guage ML [Pau96]. A theorem is a formalized statement that may be an axiom or could be deduced from
already verified theorems by an inference rule. A theorem consists of a finite set Ω of Boolean terms, called
the assumptions, and a Boolean term S, called the conclusion. Soundness is assured as every new theorem
must be verified by applying the basic axioms and primitive inference rules or any other previously verified
theorems/inference rules. A HOL Light theory is a collection of valid HOL Light types, constants, axioms,
definitions, and theorems. Various mathematical foundational concepts have been formalized and saved as
HOL Light theories. The HOL Light theorem prover provides an extensive support of theorems regarding
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Table 1. HOL Light Symbols
HOL Light Symbols Standard Symbols Meanings

/\ and Logical and
\/ or Logical or
∼ not Logical negation
==> −→ Implication
<=> = Equivalence in Boolean domain
!x.t ∀x.t For all x : t
?x.t ∃x.t There exists x : t
λx.t λx.t Function that maps x to t(x)
num {0, 1, 2, . . .} Natural numbers data type
real All Real numbers Real data type
SUC n (n+ 1) Successor of natural number
&a N→ R Typecasting from Naturals numbers to Reals
Cx(a) R→ C Typecasting from Reals to Complex
% ∗ Scalar multiplication of a vector or matrix
∗∗ ∗ Matrix-vector multiplication
@f Hilbert choice operator Returns f if it exists
atreal x Real Net At real variable x

Boolean algebra, arithmetic, real numbers, transcendental functions and multivariate analysis such as differ-
ential, integration, vectors and topology, in the form of theories. In fact, one of the primary reasons to choose
the HOL Light theorem prover for the proposed formalization was the presence of an extensive support of
higher-order-logic theories of multivariable calculus, which are quite dense amongst all higher-order-logic
theorem provers and have been extensively used in the formal verification of the robotic cell injection. In
this paper, we only incorporate the linear dynamics of the robotic cell injection system. However, one of our
future directions is to formally verify the robotic cell injection systems exhibiting the non-linear dynamics
and to verify their non-analytical/numerical solutions, which are based on the interval arithmetic, providing
the reliable and guaranteed solutions of their differential equations based dynamical models. Therefore, we
believe that higher-order logic is the right choice for the formalization of the interval arithmetic and the
verification of robotic cell injection systems exhibiting the non-linear dynamics.

Table 1 presents the standard and HOL Light representations and the meanings of some commonly used
symbols in this paper.

2.2. Multivariable Calculus Theories in HOL Light

A N -dimensional vector is represented as an RN column matrix with each of its elements as a real number in
HOL Light [Har13]. All of the vector operations are thus performed using matrix manipulations. A complex
number is defined as a 2-dimensional vector, i.e., an R2 column matrix or the data-type C, in HOL Light.
Similarly, all of the multivariable calculus theorems are verified in HOL Light for functions with an arbitrary
data-type RN → RM .

Some of the frequently used HOL Light functions in the reported formalization are explained below:

Definition 2.1. Vector (HOL Light Library, vectors.ml [hol20d])
`def ∀l. vector l = (lambda i. EL (i - 1) l)

The function vector accepts an arbitrary list l : α list and returns a vector having each component of
data-type α [hol20d]. It uses the function EL i l, which return the ith element of a list l. Here, the lambda
operator in HOL Light is used for constructing a vector from its components [Har13].

Definition 2.2. Real Cosine and Sine Functions (HOL Light Library, transcendentals.ml [hol20c])
`def ∀x. sin x = Re (csin (Cx x))
`def ∀x. cos x = Re (ccos (Cx x))

The HOL Light functions cos : R → R and sin : R → R represent the real cosine and real sine [hol20a],
respectively. These functions are formally defined using the complex cosine ccos : C → C and complex sine
csin : C→ C functions, respectively [hol20c].
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Fig. 2. Robotic Cell Injection Systems

Definition 2.3. Real Derivative (HOL Light Library, realanalysis.ml [hol20b])
`def ∀f x. real derivative f x = (@f′. (f has real derivative f′) (atreal x))

The function real derivative accepts a function f : R → R and a real number x, which is the point at
which f has to be differentiated, and returns a variable of data-type R, providing the differential of f at x.
The function has real derivative defines the same relationship in the relational form [hol20b].

We utilize the above-mentioned fundamental functions of multivariable calculus for formally analyzing
the robotic cell injection system in Sections 3 and 4 of the paper.

2.3. Robotic Cell Injection Systems

A robotic cell injection system mainly consists of three modules, namely executive, sensory and control
modules as depicted in Fig. 2. The executive module consists of positioning table, working plate and the
injection manipulator. The cells that need to be injected are placed on a working plate, which is mounted
on a positioning table (XY θ-axis) and the injection manipulator is mounted on Z-axis as shown in Fig. 2.

The sensory module consists of a vision system that has four parts, namely optical microscope, charged
coupled device (CCD) camera, peripheral component interconnect (PCI) image capture and a processing
card. The CCD camera is used to capture the cell injection process using a PCI image capture. The control
module contains a host computer and a DCT0040 motion control system. Fig. 3 depicts the configuration
of a robotic cell injection system. The axis o-xyz represents the stage (table and working plate) coordinate
frame, where o is the origin of these coordinates representing the center of the working plate and z is along
the optical axis of the microscope. Similarly, oc−xcyczc is the camera coordinate frame with oc representing
the center of the microscope. The coordinate frame in image plane is represented as oi − uv, where oi is the
origin and the axis uv is perpendicular to the optical axis.

The correct orientation, relative position and movement of various components, i.e., injection manipula-
tor, camera and microscope, and the contact-space-impedance force and the image-based torque controllers,
providing the motion planning of the injection pipette, are the foremost requirements for an efficient design
and a reliable functionality of a robotic cell injection. We provide the formalization of coordinate frames,
capturing the orientation and relative position of its various components (Theorems 3.1, 3.2 and 3.3) and
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motion planning of the injection pipette (Theorems 4.1, 4.3, 4.4 and 4.5) in Sections 3 and 4 of the paper,
respectively.

3. Formalization of Robotic Cell Injection System

We provide the higher-order-logic based formalization of the robotic cell injection system using standard
mathematical notations rather than the pure HOL Light notations to facilitate the understanding of the
paper for a non-HOL user. The readers interested in viewing the exact HOL Light formalization can obtain
the source code for our formalization from [Ras20].

In our formalization, we model robotic cell injection system based on different degree of freedoms, i.e.,
2-DOF, 3-DOF and 4-DOF as enumerated type definition in HOL Light as follows:

Definition 3.1. Robotic Cell Injection System
define type “robotic cis = TwoDOF |

ThreeDOF |
FourDOF”

Next, in order to capture the orientation and movement of various components of the robotic cell injection
system, we need to model the coordinate systems. In this regard, we require modeling a point, which captures
the position and orientation of a component in a coordinate system. Therefore, we use the type abbreviation
in HOL Light to define new types for various points as follows:

Definition 3.2. Points of a Coordinate System
new type abbrev (“one dim point”,‘:(R → R)‘)
new type abbrev (“timed one dim point”,‘:(one dim point × R)‘)
new type abbrev (“two dim point”,‘:(one dim point × one dim point)‘)
new type abbrev (“timed two dim point”,‘:(two dim point × R)‘)
new type abbrev (“three dim point”,‘:(one dim point × two dim point)‘)
new type abbrev (“timed three dim point”,‘:(three dim point × R)‘)
new type abbrev (“four dim point”,‘:(one dim point × three dim point)‘)
new type abbrev (“timed four dim point”,‘:(four dim point × R)‘)

The type one dim point provides a point in one-dimensional coordinate system, represented by its location
as a function of time, and thus captures the orientation and position of various components of the system.
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Table 2. Data Types for 2-DOF System Parameters

Parameter Description Standard
Symbol

HOL Light
Symbol:Type

Angle between two frames α α:R

Distance between two frames in x direction dx dx:R

Distance between two frames in y direction dy dy:R

Display resolution of the vision system in x direction fx fx:R

Display resolution of the vision system in y direction fy fy:R

Mass of x positioning table mx mx:R

Mass of y positioning table my my:R

Mass of the working plate mp mp:R

Similarly, the type timed one dim point is a pair, with its first element as one dim point providing the location
of a component of the underlying system that changes with time, whereas its second element models the
time. The camera, stage and image coordinates for a 2-DOF robotic cell injection system are two-dimensional
coordinates, which are modeled in HOL Light as:

Definition 3.3. Two-dimensional Coordinates

`def ∀x y t. two dim coord (((x,y),t):timed two dim point) =

[
x(t)

y(t)

]

The function two dim coord accepts a variable of data-type timed two dim point and returns a two-
dimensional vector describing the corresponding coordinates. Now, the two-dimensional motion stage coor-
dinates are modeled in HOL Light as follows:

Definition 3.4. Two-dimensional Motion Stage Coordinates
`def ∀x y t.

two dim motion stage coord TwoDOF ((x,y),t) = two dim coord ((x,y),t)

We model various parameters of the 2-DOF robotic cell injection systems as a tuple (α,dx,dy,fx,fy,mx,my,mp),
where the description and the type of each parameter is given in Table 2. These parameters characterize
various physical aspects of the robotic cell injection systems (e.g., the angle between two frames α and the
mass of the working plate mp). We formalize the parameters tuple as type abbreviations:

Definition 3.5. 2-DOF System Parameters
new type abbrev (“twodof sys par”,‘:(α × dx × dy × fx × fy × mx × my × mp)‘)

The verification of the relationship between camera, image and stage coordinates provides key information
for the reliable operation of the robotic cell injection system and thus, ensures the accuracy of the orientation
and position of its various components, i.e., stage frame, injection manipulator, camera and microscope, by
providing the accurate translation and rotation of the corresponding coordinate frames. Firstly, to verify
the relationship between the stage and camera coordinates, we model the rotation matrix from the stage
coordinate frame (o-xyz) to the camera coordinate frame (oc−xcyczc), and the two-dimensional displacement
vector between the origins of both these frames:

Definition 3.6. Rotation Matrix and Displacement Vector
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`def ∀dx dy fx fy mx my mp α.

rotation matrix 2dim (α,dx,dy,fx,fy,mx,my,mp) =

[
cos α sin α

-sin α cos α

]

`def ∀α fx fy mx my mp dx dy. disp vec 2dim (α,dx,dy,fx,fy,mx,my,mp) =

[
dx

dy

]

Now, the relationship between the camera and stage coordinate frames, as depicted in Figure 4, is
formalized in HOL Light as:

Definition 3.7. Relationship Between Camera and Stage Coordinates
`def ∀xc yc x y t α dx dy fx fy mx my mp.

relat camera stage coord frame 2dim (xc,yc) (x,y) (α,dx,dy,fx,fy,mx,my,mp) t ⇔
two dim coord ((xc,yc),t) = rotation matrix 2dim (α,dx,dy,fx,fy,mx,my,mp) ∗∗
two dim motion stage TwoDOF ((x,y),t) + disp vec 2dim (α,dx,dy,fx,fy,mx,my,mp)

where ∗∗ models the matrix-vector multiplication in HOL Light. Next, in order to ensure that the given
parameters for the camera-stage interrelationship indeed represent a valid relationship, we need to formalize
the associated constraints on the distances between two frames in the x and y directions, i.e., dx and dy.
Since the distance is always a non-negative quantity. Therefore, these distances should be greater than or
equal to zero, i.e., dx ≥ 0, dy ≥ 0. However, the frames would always be displaced during the process of the
robotic cell injection, providing dx 6= 0 and dy 6= 0. Moreover, they appear in the denominator of some of the
expressions (intermediate steps) during the verification of the relationships between the coordinate frames
and would result in an indeterminate form, if they are equal to zero. We formalize these constraints as a
predicate is valid camera stage relat 2dim (Definition 3.8) asserting the positivity of distances between
these two frames:

Definition 3.8. Valid Camera and Stage Coordinates Interrelationship
`def ∀α fx fy mx my mp dx dy.

is valid camera stage relat 2dim (α,dx,dy,fx,fy,mx,my,mp) ⇔ &0 < dx ∧ &0 < dy

Now, we verify the relationship between camera and stage coordinate frames, which ensures the correct
orientation and the relative position of the injection manipulator and cameras:
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Theorem 3.1. Relationship Between Camera and Stage Coordinates
`thm ∀xc yc x y α dx dy fx fy mx my mp t.

let sp = ((α,dx,dy,fx,fy,mx,my,mp):twodof sys par) in
cc = ((xc,yc):two dim point) and
sc = ((x,y):two dim point) in
is valid camera stage relat 2dim sp

=⇒ (relat camera stage coord frame 2dim cc sc sp t ⇔[
xc(t)

yc(t)

]
=

[
x(t) ∗ cos α + y(t) ∗ sin α + dx

- x(t) ∗ sin α + y(t) ∗ cos α + dy

])

The above theorem is verified using the properties of vectors (vectors.ml, [hol20d]) and matrices (vec-
tors.ml, [hol20d]) along with some real arithmetic reasoning. Next, to verify the relationship between image
and camera coordinate frames, we first model the display resolution matrix as follows:

Definition 3.9. Display Resolution Matrix

`def ∀α dx dy mx my mp fx fy. display resol matrix 2dim (α,dx,dy,fx,fy,mx,my,mp) =

[
fx 0

0 fy

]

The positivity of the display resolutions of the vision system provides a valid relationship between image
and camera coordinate frames and is formalized in HOL Light as:

Definition 3.10. Valid Image and Camera Coordinates Interrelationship
`def ∀α dx dy mx my mp fx fy.

is valid image camera relat 2dim (α,dx,dy,fx,fy,mx,my,mp) ⇔ &0 < fx ∧ &0 < fy

Now, the image-camera coordinate frames interrelationship for the 2-DOF robotic cell injection system,
providing the correct orientation and the relative position of cameras and images, is verified as:

Theorem 3.2. Relationship Between Image and Camera Coordinates
`thm ∀xc yc u v t dx dy fx fy mx my mp α.

let sp = ((α,dx,dy,fx,fy,mx,my,mp):twodof sys par) in
cc = ((xc,yc):two dim point) and
ic = ((u,v):two dim point) in
is valid image camera relat 2dim sp

=⇒ (relat image camera coord frame 2dim cc ic sp t ⇔[
u(t)

v(t)

]
=

[
fx ∗ xc(t)

fy ∗ yc(t)

] )

where the HOL Light function relat image camera coord frame 2dim is modeled in a similar way to relat camera
stage coord frame 2dim and provides the relationship between the image and the camera coordinates. Next,

we model the transformation matrix between image and stage coordinate frames, which is used in the
verification of their interrelationship and is given as follows:

Definition 3.11. Transformation Matrix
`def ∀dx dy mx my mp fx fy α.

transformation matrix 2dim (α,dx,dy,fx,fy,mx,my,mp) =

[
fx ∗ cos α fx ∗ sin α

-fy ∗ sin α fy ∗ cos α

]
We model constraints for the validity of the image-stage coordinate frames, i.e., positivity of its various

parameters as:

Definition 3.12. Valid Image and Stage Coordinate Interrelationship
`def ∀α mx my mp dx dy fx fy.

is valid image stage relat 2dim (α,dx,dy,fx,fy,mx,my,mp) ⇔
&0 < dx ∧ &0 < dy ∧ &0 < fx ∧ &0 < fy
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Now, we verify an important relationship between the image and stage coordinates, asserting the cor-
rect orientation and the relative position of the injection manipulator and images, as the following HOL
Light theorem:

Theorem 3.3. Relationship Between Image and Stage Coordinates
`thm ∀x y u v t fx fy dx dy mx my mp α xc yc.

let sp = ((α,dx,dy,fx,fy,mx,my,mp):twodof sys par) and
cc = ((xc,yc):two dim point) and
sc = ((x,y):two dim point) and
ic = ((u,v):two dim point) in
[A1:] is valid image stage relat 2dim sp ∧
[A2:] relat image camera coord frame 2dim cc ic sp t ∧
[A3:] relat camera stage coord frame 2dim cc sc sp t

=⇒ twod coord (ic,t) = transformation matrix 2dim sp ∗∗

two dim motion stage TwoDOF (sc,t) +

[
fx ∗ dx

fy ∗ dy

]

Assumption A1 provides the validity of the relationship between stage and image coordinate frames (Def-
inition 3.12). Similarly, Assumptions A2-A3 present the relationships between the image and camera, and
camera and stage (Definition 3.7) coordinate frames, respectively. The verification of Theorem 3.3 is mainly
based on Theorems 3.1 and 3.2, and some classical properties of the vectors (vectors.ml [hol20d]) and matrices
(vectors.ml [hol20d]). The verification of these relationships raises our confidence level about the orientation
and position of the vital components of a 2-DOF robotic cell injection system, i.e., working plate, camera,
microscope and injection manipulator. Similarly, we formally verify the relationships between the camera,
stage and image coordinate frames for 3-DOF and 4-DOF robotic cell injection systems and the verified
theorems regarding these relationships for 3-DOF and 4-DOF systems are presented in Tables 3 and 4,
respectively. These theorems have been included in the paper to make it self-contained especially for the
non-users of HOL. More experienced readers may skim through these details.

The transformation from 2-DOF to 3-DOF extends the corresponding coordinate frames from 2-dimensional
(x, y) to 3-dimensional (x, y, z) coordinates and thus adds an extra degree of freedom for the motion stage
of the robotic cell injection system. This allows the translation of the system’s components in the third
dimension and thus contributes to the movement of components along z-axis in addition to the x and y axes.
Similarly, moving to 4-DOF system adds another degree of freedom for the motion stage by extending the
coordinate frames from 3-dimensional (x, y, z) to 4-dimensional (x, y, z, θ) coordinates and thus provides
the rotation of the system’s components along θ in addition to their translation along the x, y and z axes.
This completes our verification of various coordinate frames interrelationships, capturing the position and
movement of various components, for the robotic cell injection systems up to 4-DOF. More details about
their verification can be found at [Ras20].

Table 3: Coordinate Frames Interrelationships for 3-DOF System

Relationship Between Camera and Stage Coordinates

`thm ∀xc yc zc x y z α dx dy dz fx fy mx my mz mp t.

let sp = ((α,dx,dy,dz,fx,fy,mx,my,mz,mp):threedof sys par) and

sc = ((x,y,z):three dim point) and

cc = ((xc,yc,zc):three dim point) in

is valid camera stage relat 3dim sp

=⇒
(
relat camera stage coord frame 3dim cc sc sp t ⇔

xc(t)

yc(t)

zc(t)

 =


x(t) ∗ cos α + y(t) ∗ sin α + dx

- x(t) ∗ sin α + y(t) ∗ cos α + dy

z(t) + dz


)

Relationship Between Image and Camera Coordinates
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`thm ∀xc yc zc u v z t dx dy dz fx fy mx my mz mp α.

let sp = ((α,dx,dy,dz,fx,fy,mx,my,mz,mp):threedof sys par) and

cc = ((xc,yc,zc):three dim point) and

ic = ((u,v,z):three dim point) in

is valid image camera relat 3dim sp

=⇒
(
relat image camera coord frame 3dim cc ic sp t ⇔

u(t)

v(t)

z(t)

 =


fx ∗ xc(t)

fy ∗ yc(t)

zc(t) - dz


)

Relationship Between Image and Stage Coordinates

`thm ∀x y u v z t fx fy dx dy dz mx my mz mp α xc yc zc.

let sp = ((α,dx,dy,dz,fx,fy,mx,my,mz,mp):threedof sys par) and

cc = ((xc,yc,zc):three dim point) and

sc = ((x,y,z):three dim point) and

ic = ((u,v,z):three dim point) in

[A1:] is valid image stage relat 3dim sp ∧
[A2:] relat image camera coord frame 3dim cc ic sp t ∧
[A3:] relat camera stage coord frame 3dim cc sc sp t

=⇒
(

three dim coord (ic,t) = transformation matrix 3dim sp ∗∗

three dim motion stage ThreeDOF (sc,t) +


fx ∗ dx

fy ∗ dy

&0


)

Table 4: Coordinate Frames Interrelationships for 4-DOF System

Relationship Between Camera and Stage Coordinates

`thm ∀xc yc zc thetac x y z theta α dx dy dz fx fy mx my mz mp Ip t.

let sp = ((α,dx,dy,dz,fx,fy,mx,my,mz,mp,Ip):fourdof sys par) and

cc = ((xc,yc,zc,thetac):four dim point) and

sc = ((x,y,z,theta):four dim point) in

is valid camera stage relat 4dim sp

=⇒
(
relat camera stage coord frame 4dim cc sc sp t ⇔

xc(t)

yc(t)

zc(t)

thetac(t)

 =


x(t) ∗ cos α + y(t) ∗ sin α + dx

- x(t) ∗ sin α + y(t) ∗ cos α + dy

z(t) + dz

theta(t)


)

Relationship Between Image and Camera Coordinates
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`thm ∀xc yc zc thetac u v z thetai t dx dy dz fx fy mx my mz mp Ip α.

let sp = ((α,dx,dy,dz,fx,fy,mx,my,mz,mp,Ip):fourdof sys par) and

cc = ((xc,yc,zc,thetac):four dim point) and

ic = ((u,v,z,thetai):four dim point) in

is valid image camera relat 4dim sp

=⇒
(
relat image camera coord frame 4dim cc ic sp t ⇔

u(t)

v(t)

z(t)

thetai(t)

 =


fx ∗ xc(t)

fy ∗ yc(t)

zc(t) - dz

thetac(t)


)

Relationship Between Image and Stage Coordinates

`thm ∀x y z theta u v thetai t fx fy dx dy dz mx my mz mp Ip α xc yc zc thetac.

let sp = ((α,dx,dy,dz,fx,fy,mx,my,mz,mp,Ip):fourdof sys par) and

cc = ((xc,yc,zc,thetac):four dim point) and

sc = ((x,y,z,theta):four dim point) and

ic = ((u,v,z,thetai):four dim point) in

[A1:] is valid image stage relat 4dim sp ∧
[A2:] relat image camera coord frame 4dim cc ic sp t ∧
[A3:] relat camera stage coord frame 4dim cc sc sp t

=⇒
(
four dim coord (ic,t) = transformation matrix 4dim sp ∗∗

four dim motion stage FourDOF (sc,t) +


fx ∗ dx

fy ∗ dy

&0

&0


)

4. Formalization of the Motion Planning of the Injection Pipette

In this section, we present the formalization of the dynamical behavior of the robotic cell injection systems
upto 4-DOF, based on differential equations and the verification of their solutions. We also formalize the
contact-space-impedance force and image based torque controllers (2D and 3D controllers) and formally
verify the relationship between these controllers. First, we model various parameters of these controllers as
a tuple (taux,tauy,fexd, feyd,fex,fey,m,b,k), where the description and the type of each parameter is given
in Table 5. These parameters characterize various physical aspects of these controllers (e.g., x component of
the torque input to the driving motors taux etc.). We formalize the parameters tuple in HOL Light as type
abbreviations:

Definition 4.1. Two-dimensional Controller Parameters
new type abbrev (“two dim cont par”,‘:(taux × tauy × fexd × feyd × fex × fey × m × b × k)‘)

Now, the dynamics of the 2-DOF motion stage based robotic cell injection system is mathematically
expressed as [HSML06]:

[
mx +my +mp 0

0 my +mp

]
d2x

dt

d2y

dt

+

[
1 0

0 1

]
dx

dt

dy

dt

 =

τx
τy

−
fexd
feyd

 (1)
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Table 5. Data Types for Two-dimensional Controllers Parameters

Parameter Description Standard
Symbol

HOL Light
Symbol:Type

x component of the torque input to the driving motors τx taux:R → R

y component of the torque input to the driving motors τy tauy:R → R

x component of the desired force applied to actuators fex
d fexd:R → R

y component of the desired force applied to actuators fey
d feyd:R → R

x component of the actual force applied to actuators fex fex:R → R

y component of the actual force applied to actuators fey fey:R → R

mass coefficient of impedance control m m:R

damping coefficient of impedance control b b:R

damping coefficient of impedance control k k:R

We formalize Equation (1) as the following HOL Light function:

Definition 4.2. Dynamics of the 2-DOF Motion Stage
`def ∀α dx dy fx fy mx my mp x y t taux tauy fexd feyd fex fey m b k.

dynamics motion stage TwoDOF ((x,y),t) (α,dx,dy,fx,fy,mx,my,mp) (taux,tauy,fexd,feyd,fex,fey,m,b,k) ⇔
mass mat 2dim (α,dx,dy,fx,fy,mx,my,mp) ∗∗ second order deriv stage coord 2dim ((x,y),t) +
posit table mat 2dim ∗∗ first order deriv stage coord 2dim ((x,y),t) =
torque vec 2dim (taux,tauy,fexd,feyd,fex,fey,m,b,k) -
desired force vec 2dim (taux,tauy,fexd,feyd,fex,fey,m,b,k)

where mass mat 2dim is the matrix containing the respective masses. Similarly, posit table mat 2dim is the
diagonal matrix. It is generally taken as a matrix with arbitrary diagonal entries, providing the dynamics
of the 2-DOF motion stage as a set of second-order non-linear differential equations and thus requires
the point load model for the corresponding analysis [HSML06]. However, we have simplified the model
by taking the diagonal matrix as an identity matrix, i.e., we take the diagonal entries as 1 rather than
taking them as arbitrary values. Therefore, it results into a second-order linear homogeneous differential
equation. Similarly, torque vec 2dim and desired force vec 2dim are the two-dimensional vectors with their
elements representing the components of the applied torque and desired force. The HOL Light functions
first order deriv stage coord 2dim and second order deriv stage coord 2dim model the two-dimensional vectors,
which are first-order and second-order derivatives of the stage coordinates, respectively.

Definition 4.3. First and Second-order Derivative Vectors
`def ∀x y t. first order deriv stage coord ((x,y),t) = deriv vec first [x; y] t

`def ∀x y t. second order deriv stage coord ((x,y),t) = deriv vec second [x; y] t

where deriv vec first and deriv vec second accept a list containing the functions of data-type R → R and
return the corresponding first and second-order derivative vectors [Ras20].

If the applied torque and force vectors are zero, then the injection pipette does not touch the cells. This
describes a scenario, when the process of the robotic cell injection has not been started. Thus, Equation (1)
can be transformed for this particular scenario as follows:

[
mx +my +mp 0

0 my +mp

]
d2x

dt

d2y

dt

+

[
1 0

0 1

]
dx

dt

dy

dt

 =

[
0

0

]
(2)

To verify the solution of the above equation (will be verified as Theorem 4.1), we first model the constraint
on masses, i.e., positivity of mx, my and mp, as the following predicate:

Definition 4.4. Valid Masses



Formal Verification of Robotic Cell Injection Systems up to 4-DOF using HOL Light 15

`def ∀dx dy fx fy α mx my mp.

valid masses 2dim (α,dx,dy,fx,fy,mx,my,mp) = &0 < mx ∧ &0 < my ∧ &0 < mp

Similarly, the initial conditions for the x and y components of the stage coordinate frames and their
derivatives in HOL Light are modeled as follows:

Definition 4.5. Initial Conditions

`def ∀x y t. initial conditions 2dim ((x,y),t) = x(0) = x0 ∧ y(0) = y0 ∧ dx

dt
(0)= xd0 ∧ dy

dt
(0)= yd0

Now, we verify the solution of Equation (2), providing the dynamics of 2-DOF motion stage, as the
following HOL Light theorem:

Theorem 4.1. Solution of Dynamical Behavior of 2-DOF Motion Stage
`thm ∀x y mx my mp dx dy fx fy taux tauy fex fey fexd feyd α b k m t x0 y0 xd0 yd0.

let sp = ((α,dx,dy,fx,fy,mx,my,mp):twodof sys par) and
cp = ((taux,tauy,fexd,feyd,fex,fey,m,b,k):two dim cont par) and
sc = ((x,y):two dim point) in
[A1:] valid masses 2dim sp ∧
[A2:] initial conditions 2dim (sc,t) x0 y0 xd0 yd0 ∧

[A3:]

[
taux t

tauy t

]
=

[
0

0

]
∧ [A4:]

[
fexd t

feyd t

]
=

[
0

0

]
∧

[A5:] (∀t. 0 ≤ t ⇒ x(t) = (x0 + xd0 ∗ (mx + my + mp)) - xd0 ∗ (mx + my + mp) ∗ e
−1

mx+my+mp
t
)
∧

[A6:] (∀t. 0 ≤ t ⇒ y(t) = (y0 + yd0 ∗ (my + mp)) - yd0 ∗ (my + mp) ∗ e
−1

my+mp
t
)

=⇒ dynamics motion stage TwoDOF (sc,t) sp cp

Assumption A1 provides the validity of the masses mx, my and mp (Definition 4.4). Similarly, Assumption
A2 presents the initial conditions for x and y components of the stage coordinate frame (Definition 4.5).
Assumptions A3-A4 model the condition that the two-dimensional torque and force vectors are zero. As-
sumptions A5-A6 provide the values of xy coordinates at any time t. Finally, the conclusion represents the
dynamics of the robotic cell injection system having 2-DOF motion stage, which is composed of the working
plate holding the cells, placed on the positioning table, as shown in Figure 2. The verification of Theorem 4.1
is based on the properties of real derivatives (realanalysis.ml [hol20b]), transcendental functions (transcen-
dentals.ml [hol20c]), vectors (vectors.ml [hol20d]) and matrices (vectors.ml [hol20d]) along with some real
arithmetic reasoning. Similarly, we formally verify the solutions of the dynamics of the 3-DOF and 4-DOF
robotic cell injection systems and the details about their verification can be found at [Ras20]. Next, we verify
the solution of Equation (1), by considering the applied torque and the desired force vectors exhibiting the
behavior of the exponential function, as the following HOL Light theorem:

Theorem 4.2. Solution of Dynamical Behavior of 2-DOF Motion Stage
`thm ∀x y mx my mp dx dy fx fy taux tauy fex fey fexd feyd α b k m t x0 y0 xd0 yd0 ax ay bx by.

let sp = ((α,dx,dy,fx,fy,mx,my,mp):twodof sys par) and
cp = ((taux,tauy,fexd,feyd,fex,fey,m,b,k):two dim cont par) and
sc = ((x,y):two dim point) in
[A1:] physical constraints 2dim sp ax ay bx by ∧
[A2:] initial conditions 2dim (sc,t) x0 y0 xd0 yd0 ∧

[A3:]

[
taux t

tauy t

]
=

[
e(ax)t

e(ay)t

]
∧ [A4:]

[
fexd t

feyd t

]
=

[
e(bx)t

e(by)t

]
∧

[A5:] (∀t. 0 ≤ t ⇒ x(t) = (x0 + xd0 ∗ (mx + my + mp)) - xd0 ∗ (mx + my + mp) ∗ e
−1

mx+my+mp
t
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+ 1
(mx+my+mp) ∗ (ax)2+ax

e(ax)t - 1
(mx+my+mp) ∗ (bx)2+bx

e(bx)t
)
∧

[A6:] (∀t. 0 ≤ t ⇒ y(t) = (y0 + yd0 ∗ (my + mp)) - yd0 ∗ (my + mp) ∗ e
−1

my+mp
t

+ 1
(my+mp) ∗ (ay)2+ay

e(ay)t - 1
(my+mp) ∗ (by)2+by

e(by)t
)

=⇒ dynamics motion stage TwoDOF (sc,t) sp cp

Assumption A1 provides physical constraints associated with the system. Assumption A2 is the same as
that of Theorem 4.1. Assumptions A3-A4 assert the two-dimensional torque and force vectors as exponential
functions. Assumptions A5-A6 present the values of xy coordinates at any time t. Finally, the conclusion
provides the dynamics of the robotic cell injection system during the process of injection. The verification
of Theorem 4.2 is based on the properties of transcendental functions (transcendentals.ml [hol20c]), real
derivatives (realanalysis.ml [hol20b]), vectors (vectors.ml [hol20d]) and matrices (vectors.ml [hol20d]) along
with some real arithmetic reasoning. Similarly, we formally verify the solutions of the dynamics of the 3-DOF
and 4-DOF robotic cell injection systems during injection process and the details about their verification
can be found at [Ras20]. Next, we verify an alternate representation of the image-stage coordinate frames
interrelationship, which depends on the dynamics of the 2-DOF motion stage (Definition 4.2) and is a vital
property for analyzing the robotic cell injection systems. For this purpose, we first model the positioning
table and inertia matrices in HOL Light as:

Definition 4.6. Positioning Table and Inertia Matrices
`def ∀α dx dy fx fy mx my mp.

posit table mat fin 2dim (α,dx,dy,fx,fy,mx,my,mp) =
posit table mat 2dim ∗∗ matrix inv (transformation matrix 2dim (α,dx,dy,fx,fy,mx,my,mp))

`def ∀α dx dy fx fy mx my mp.
inertia mat 2dim (α,dx,dy,fx,fy,mx,my,mp) =
mass mat 2dim (α,dx,dy,fx,fy,mx,my,mp) ∗∗ matrix inv

(transformation matrix 2dim (α,dx,dy,fx,fy,mx,my,mp))

where the HOL Light function matrix inv accepts a matrix A:RMN
and returns its inverse. Now, the alternate

representation of the image-stage coordinate frames interrelationship, providing the relationship between the
dynamics of the 2-DOF motion stage and the image-stage coordinate frames interrelationship, is verified as
the following HOL Light theorem:

Theorem 4.3. Image-stage Coordinate Frames Interrelationship
`thm ∀xc yc u v x y fx fy dx dy mx my mp taux tauy fexd feyd fex fey α b m k t.

let sp = ((α,dx,dy,fx,fy,mx,my,mp):twodof sys par) and
cp = ((taux,tauy,fexd,feyd,fex,fey,m,b,k):two dim cont par) and
cc = ((xc,yc):two dim point) and
sc = ((x,y):two dim point) and
ic = ((u,v):two dim point) in
[A1:] is valid image stage relat 2dim sp ∧
[A2:] invertible (transformation matrix 2dim sp) ∧
[A3:] (∀t. u real differentiable atreal t) ∧
[A4:] (∀t. v real differentiable atreal t) ∧

[A5:] (∀t.
du

dt
real differentiable atreal t) ∧

[A6:] (∀t.
dv

dt
real differentiable atreal t) ∧

[A7:] (∀t. relat image camera coord frame 2dim cc ic sp t) ∧
[A8:] (∀t. relat camera stage coord frame 2dim cc sc sp t) ∧
[A9:] dynamics motion stage TwoDOF (sc,t) sp cp

=⇒ inertia mat 2dim sp ∗∗ sec ord der gen coord 2dim (ic,t) +
posit table mat fin 2dim sp ∗∗ fir ord der gen coord 2dim (ic,t) =

torque vec 2dim cp - desired force vec 2dim cp
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Assumption A1 provides a valid relationship between the image and stage coordinate frames (Defini-
tion 3.12). Similarly, Assumption A2 ensures that the transformation matrix (transformation matrix 2dim,
Definition 3.11) is invertible, i.e., its inverse exists. Assumptions A3-A6 model the differentiability condition
for the image coordinate frames and their first-order derivatives. Assumptions A7-A8 provide the image-
camera and camera-stage (Definition 3.7) coordinate frames interrelationships. Assumption A9 models the
dynamics of the robotic cell injection system having 2-DOF motion stage (Definition 4.2). Finally, the con-
clusion of Theorem 4.3 presents the relationship between the dynamics of the 2-DOF motion stage and the
image-stage coordinate frames interrelationship. The verification of Theorem 4.3 is based on the properties of
the real derivative (realanalysis.ml [hol20b]), matrices (vectors.ml [hol20d]) and vectors (vectors.ml [hol20d])
along with some real arithmetic reasoning. For a particular scenario, if we are given with the dynamics of the
2-DOF motion stage of a robotic cell injection system, we can obtain the relationship between the image and
stage coordinate frames using Theorem 4.3. Similarly, we formally verify the relationship of the dynamics of
motion stage and the image-stage coordinate frames interrelationship of the 3-DOF and 4-DOF robotic cell
injection systems and the details about their verification can be found at [Ras20].

The injection motion controller is another vital part of the cell injection systems and its verification is
necessary for a reliable system. It mainly includes the control of the applied injection force and the torque
applied to the driving motor. In order to formalize these force and torque controllers, we first model the
types of these controllers using the enumerated type feature of HOL Light as:

Definition 4.7. Force Controller
define type “force control = TwoDimF |

ThreeDimF”

Definition 4.8. Torque Controller
define type “torque control = TwoDimT |

ThreeDimT”

where TwoDimF and ThreeDimF model the two and three-dimensional force controllers, respectively. Similarly,
TwoDimT and ThreeDimT present the two and three-dimensional torque controllers, respectively.

Now, we first formalize the force and torque controls for a 2-DOF robotic cell injection system and
formally verify the relationship between both of these controllers. The impedance force control for a 2-DOF
robotic cell injection system (will be formalized as Definition 4.9) is represented as follows:

më+ bė+ ke = fe (3)

where fe is the two-dimensional vector having fex and fey as its elements. Moreover, e, ė and ë are the
two-dimensional vectors representing the position errors of the xy stage coordinates, their first-order and
second-order derivatives, respectively, and are mathematically expressed as:

e =

[
xd

yd

]
−

[
x

y

]
, ė =


dxd
dt

dyd
dt

−

dx

dt

dy

dt

 , ë =


d2xd
dt

d2yd
dt

−

d2x

dt

d2y

dt

 (4)

where x and y are the actual axes and xd and yd are the desired axes of the stage coordinate frame. Now,
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the image-based torque controller for the xy stage coordinates (will be formalized as Definition 4.10) is
mathematically expressed as:

τx
τy

 =

mx +my +mp 0

0 my +mp

 fx cosα fx sinα

−fy sinα fy cosα



d2xd
dt

d2yd
dt

+

mx +my +mp 0

0 my +mp

 fx cosα fx sinα

−fy sinα fy cosα

m−1(bė+ ke− fe)+

(1 0

0 1

 fx cosα fx sinα

−fy sinα fy cosα

−1) fx cosα fx sinα

−fy sinα fy cosα



dx

dt

dy

dt

+

fexd
feyd



(5)

Equation (5) can be alternatively written as:

−→τ = MT


d2xd
dt

d2yd
dt

+MTm−1(bė+ ke− fe) +NT


dx

dt

dy

dt

+
−→
fed (6)

where M , N and T in the above equation denote the inertia, positioning table and transformation matrices.
For example, the inertia matrix M contains the respective masses, i.e., mx, my and mp. Similarly, the posi-
tioning table represents a multiplication of a diagonal matrix with the inverse of the transformation matrix,
i.e., T−1. The above equation was wrongly presented in simulations [HSML06] and model checking [SH17]
based analysis as follows:

−→τ = M


d2xd
dt

d2yd
dt

+Mm−1(bė+ ke− fe) +N


dx

dt

dy

dt

+
−→
fed (7)

−→τ = MT


d2xd
dt

d2yd
dt

+MTm−1(bė+ ke− fe) +NT


dx

dt

dy

dt

+
−→
fe (8)

In Equation (7) (used in the simulations based analysis [HSML06]), the transformation matrix (T ) is
missing, which involves the amount of applied force and the angles at which the pipette is injected into the
cell: its absence can lead to disastrous consequences, i.e., damaging cell tissues, excess substance injection etc.
Similarly, in Equation (8) (used in the model checking based analysis [SH17]), fed is wrongly interpreted as
fe, i.e., the desired force, is taken equal to the applied force, which can never happen in a real-world system.
We obtained these incorrect interpretations of Equation (6) in the simulations and model checking based
analyses during the verification of the relationship between force and torque controllers. We first started the
verification of this relationship using Equation (7) and ended up with the identification of this issue. We used
the backward (goal directed) proof method to verify the relationship, modeled as the HOL Light theorem
of the form A1, A2, ..., An =⇒ C, where A1, A2, ..., An capture the set of assumptions and C models
the conclusion and is the main goal of the HOL Light theorem. It involves the concept of a tactic (an ML
function), which divides the main goal into subgoals. These tactics are repeatedly used to reduce or simplify
the main goal (required theorem) into intermediate subgoals until they match with the assumptions of the
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HOL Light theorem. However, the transformation matrix (T ) was missing in one of the subgoals, resulting in
a mismatch with the corresponding assumption, which ended up with the identification of the issue. Next,
we took Equation (8) and again, during its verification, identified its wrong interpretation, which enabled us
to obtain its right interpretation as given in Equation (6). To formally verify the relationship between the
two-dimensional force and torque controllers, we first formalize these controllers in HOL Light as follows:

Definition 4.9. Two Dimensional Force Controller
`def ∀xd yd x y t taux tauy fexd feyd fex fey m b k.

contact space imped control 2d TwoDimF (xd,yd) (x,y) (taux,tauy,fexd,feyd,fex,fey,m,b,k) t ⇔
m % posit errors second order deriv 2dim (xd,yd) (x,y) t +
b % posit errors first order deriv 2dim (xd,yd) (x,y) t +
k % posit errors vector 2dim (xd,yd) (x,y) t = external force 2dim (taux,tauy,fexd,feyd,fex,fey,m,b,k)

Definition 4.10. Two Dimensional Torque Controller
`def ∀xd yd α dx dy fx fy mx my mp x y t taux tauy fexd feyd fex fey m b k.

image based torque control 2d TwoDimT (x,y) (xd,yd)
(α,dx,dy,fx,fy,mx,my,mp) (taux,tauy,fexd,feyd,fex,fey,m,b,k) t ⇔

torque vec 2dim (taux,tauy,fexd,feyd,fex,fey,m,b,k) =
(inertia mat 2dim (α,dx,dy,fx,fy,mx,my,mp) ∗∗ transformation matrix 2dim (α,dx,dy,fx,fy,mx,my,mp)) ∗∗
posit second order deriv 2dim (xd,yd) t +

(inertia mat 2dim (α,dx,dy,fx,fy,mx,my,mp) ∗∗ transformation matrix 2dim (α,dx,dy,fx,fy,mx,my,mp)) ∗∗
inv m % (b % posit errors first order deriv 2dim (xd,yd) (x,y) t +

k % posit errors vector 2dim (xd,yd) (x,y) t - external force 2dim (taux,tauy,fexd,feyd,fex,fey,m,b,k)) +
(posit table mat fin 2dim (α,dx,dy,fx,fy,mx,my,mp) ∗∗
transformation matrix 2dim (α,dx,dy,fx,fy,mx,my,mp)) ∗∗ posit first order deriv 2dim (x,y) t +
desired force vec 2dim (taux,tauy,fexd,feyd,fex,fey,m,b,k)

Next, we model various conditions on the impedance parameters, i.e., their positivity, as constraint in
HOL Light:

Definition 4.11. Constraint on Impedance Parameters
`def ∀taux tauy fexd feyd fex fey m b k.

constraints imped parameters (taux,tauy,fexd,feyd,fex,fey,m,b,k) ⇔ &0 < m ∧ &0 < k ∧ &0 < b

Now, we formally verify the relationship between the contact-space-impedance force (Equation (3)) and
the image-based torque controller (Equation (5)), providing the smooth functionality of the robotic cell
injection process, as the following HOL Light theorem:

Theorem 4.4. Relationship Between Force and Torque Controllers
`thm ∀xd yd x y t mx my mp fx fy dx dy α taux tauy fex fey fexd feyd m b k.

let sp = ((α,dx,dy,fx,fy,mx,my,mp):twodof sys par) and
cp = ((taux,tauy,fexd,feyd,fex,fey,m,b,k):two dim cont par) and
dc = ((xd,yd):two dim point) and
sc = ((x,y):two dim point) in
[A1:] constraints imped parameters cp ∧
[A2:] invertible (transformation matrix 2dim sp) ∧
[A3:] contact space imped control 2d TwoDimF dc sc cp t ∧
[A4:] dynamics motion stage TwoDOF (sc,t) sp cp

=⇒ image based torque control 2d TwoDimT sc dc sp cp t

Assumption A1 captures the conditions on the desired impedance parameters (Definition 4.11). Simi-
larly, Assumption A2 provides the condition that the transformation matrix (transformation matrix 2dim) is
invertible. Assumption A3 models the impedance force control (Equation (3)). Assumption A4 presents the
dynamics of the robotic cell injection system having 2-DOF motion stage (Definition 4.2). Finally, the con-
clusion represents the image-based torque controller (Equation (5)), controlling the process of the robotic
cell injection. The verification of Theorem 4.4 is mainly based on the properties of real derivative (realanal-
ysis.ml [hol20b]), vectors (vectors.ml [hol20d]) and matrices (vectors.ml [hol20d]). Similarly, we formally
verify the relationship between the 3D force and torque controllers and the details about their verification
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can be found at [Ras20]. Finally, we package both (2D and 3D) force and torque controllers in inductive
predicates gen force control and gen torque control, which take the type and parameters of the con-
trollers, and coordinate frames, and return the predicate describing the corresponding 2D or 3D controller.
For example, for the 2D torque controller TwoDimT, the inductive predicate gen torque control returns
image based torque control 2d1.

We verify a general theorem, which describes the relationship between generalized force controller fc and
torque controller tc, as follows:

Theorem 4.5. Relationship Between Generalized Force and Torque Controllers
`thm ∀(fc:force control) (tc:torque control) (sys:robotic cis) xd yd zd x y z t.

let sp = ((α,dx,dy,dz,fx,fy,mx,my,mz,mp):threedof sys par) and
cp = ((taux,tauy,tauz,fexd,feyd,fezd,fex,fey,fez,m,b,k,g):three dim cont par) and
sc = ((x,y,z):three dim point) and
dc = ((xd,yd,zd):three dim point) in
[A1]: gen phy imped constraints sp cp ∧
[A2]: gen force control fc dc sc cp t ∧
[A3]: dynam mot stage sys (sc,t) sp cp

=⇒ gen torque control tc sc dc sp cp t

where the predicate gen phy imped constraints encapsulates the physical and impedance parameters con-
straints of all types of controllers (2D and 3D) in our formalization. Similarly, the predicate dynam mot stage
captures the dynamics of the robotic cell injection systems upto 4-DOF. The proof process of Theorem 4.5
is based on induction on fc:force control, tc:torque control and sys:robotic cis along with the ver-
ified theorems, providing the relationship of the force and torque controllers, for 2D and 3D controllers (e.g.,
Theorem 4.4 for 2D controllers).

This concludes our formalization of the robotic cell injection systems in HOL Light. Due to the undecidable
nature of the higher-order logic, the verification results, presented in Sections 3 and 4, involved manual
interventions and human guidance. However, we developed some tactics to automate the verification process.
For example, we developed a tactic VEC MAT SIMP TAC, which simplifies the vector and matrix arithmetics
involved in the formal analysis of the robotic cell injection system. The details about these tactics and rest
of the formalization can be found in our proof script [Ras20].

The distinguishing feature of our formal analysis is that all of the verified theorems are of generic nature,
i.e., all of the functions and variables are universally quantified and thus can be specialized based on the
requirement of the analysis of the cell injection systems. Whereas, in the case of computer based simulations,
we need to model each case individually. Moreover, the inherent soundness of the theorem proving technique
ensures that all the required assumptions are explicitly present along with the theorem. Similarly, due to the
high expressiveness of the higher-order logic, our approach allows us to model the dynamics of the robotic cell
injection systems involving differential and derivative (Equations (1), (3), (5)) in their true form, whereas, in
their model checking based analysis [SH17] they are discretized and modeled using a state-transition system,
which may compromise the accuracy and completeness of the corresponding analysis.

The effort involved in the verification of the individual theorem in the form of proof lines and the
man-hours is presented in Table 6. The proof process for the formalization of coordinate frames for the
2-DOF, 3-DOF and 4-DOF robotic cell injection system took 165 lines and only 12 man-hours. Similarly,
the verification of Theorem 4.5 involved only 7 lines of HOL Light code and an hour, which clearly illustrates
the benefit of Theorem 4.4 and the corresponding theorems for 3 and 4-DOF robotic cell injection systems.
Moreover, the development of the formal verification of the robotic cell injection system (formal definitions,
and corresponding theorems and their proofs) on paper, before their actual implementation in HOL Light,
took around 90 man-hours. It is important to note that the man-hours are based on the number of lines of
code as well as the complexity of the proof. So the number of lines of the proof script do not have a direct
relationship with the man-hours. For example, the proof lines for the verification of relationship between
the image and stage coordinates for 2- DOF system are greater than that for 3-DOF system, whereas the
man-hours for the former are less than that for the latter.

Our formal analysis of the dynamical behavior of the robotic cell injection presented above is quite vital

1 We have omitted the formal definitions of gen force control and gen torque control for the sake of conciseness, however,
interested readers can find the formal definitions and HOL Light code on the project’s webpage [Ras20].
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[h]

Table 6. Verification Details for each Theorem
Formalized Theorems Proof Lines Man-hours

Theorem 3.1 (Relationship Between Camera and Stage Coordinates, 2-DOF) 19 1
Theorem 3.2 (Relationship Between Image and Camera Coordinates, 2-DOF) 7 0.5
Theorem 3.3 (Relationship Between Image and Stage Coordinates, 2-DOF) 34 2
Table 3: Relationship Between Camera and Stage Coordinates, 3-DOF 21 1
Table 3: Relationship Between Image and Camera Coordinates, 3-DOF 7 0.5
Table 3: Relationship Between Image and Stage Coordinates, 3-DOF 29 3
Table 4: Relationship Between Camera and Stage Coordinates, 4-DOF 9 0.5
Table 4: Relationship Between Image and Camera Coordinates, 4-DOF 7 0.5
Table 4: Relationship Between Image and Stage Coordinates, 4-DOF 32 3
Theorem 4.1 (Solution of Dynamical Behavior of 2-DOF Motion Stage) 270 16
Theorem 4.2 (Solution of Dynamical Behavior of 2-DOF Motion Stage) 350 20
Theorem 4.3 (Image-stage Coordinate Frames Interrelationship) 125 12
Theorem 4.4 (Relationship Between Force and Torque Controllers) 135 10
Theorem 4.5 (Relationship Between Generalized Force and Torque Controllers) 7 1

for the correct design and functionality of the robotic cell injection systems. For example, the verified rela-
tionships between various coordinate frames enable the correct orientation, relative position and movement
of its various components, i.e., injection manipulator, camera and microscope etc. Similarly, the verification
of the contact-space-impedance force and the image-based torque controllers can help in planning the motion
of the injection pipette by developing the efficient force and torque control algorithms and thus to regulate
the process of the robotic cell injection.

5. Conclusions

Robotic cell injection involves the insertion of bimolecular, sperm, DNA or protein into a specific location of
suspended or adherent cells and is widely used in drug development, cellular biology research and transgenics.
In this paper, we proposed a higher-order-logic theorem proving based framework for analyzing the dynamical
behavior of the robotic cell injection system upto 4-DOF. We first formalized various coordinate frames, i.e.,
stage, camera and image coordinate, which are the main components of a robotic cell injection system, and
formally verified their interrelationship using the HOL Light theorem prover. We also formalized the dynamics
of the robotic cell injection systems upto 4-DOF, based on differential equations and verified their solutions
in HOL Light. Finally, we formalized the contact-space-impedance force and image-based torque controllers
(2D and 3D) and verified their relationship. Our formalization helped us to identify some key discrepancies
in the simulation-based and model checking based analysis of these systems, which shows the usefulness of
using higher-order-logic theorem proving in the formal analysis of safety-critical systems.

In future, we plan to formally verify the robotic cell injection system exhibiting the non-linear dynam-
ics [HSML06], i.e., the dynamics of the motion stage are modeled as a set of second-order non-linear differen-
tial equations. This requires the verification of the non-analytical/numerical solutions of their dynamics. We
need the formalization of the interval arithmetic [Daw11], providing the reliable and guaranteed solutions of
their differential equations based dynamical models.
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