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Abstract
Interactive theorem provers (ITPs), also known as proof assistants, allow human users to write and verify formal proofs.
The proof development process in ITPs can be a cumbersome and time-consuming activity due to manual user interactions.
This makes proof guidance and proof automation the two most desired features for ITPs. In this paper, we first provide
two evolutionary and heuristic-based proof searching approaches for the HOL4 proof assistant, where a genetic algorithm
(GA) and simulated annealing (SA) is used to search and optimize the proofs in different HOL theories. In both approaches,
random proof sequences are first generated from a population of frequently occurring HOL4 proof steps that are discovered
with sequential pattern mining. Generated proof sequences are then evolved using GA operators (crossover and mutation)
and by applying the annealing process of SA till their fitness match the fitness of the target proof sequences. Experiments
were done to compare the performance of SA with that of GA. Results have shown that the two proof searching approaches
can be used to efficiently evolve the random sequences to obtain the target sequences. However, these approaches lack the
ability to learn the proof process, that is important for the prediction of new proof sequences. For this purpose, we propose
to use a deep learning technique known as long short-term memory (LSTM). LSTM is trained on various HOL4 theories
for proof learning and prediction. Experimental results suggest that combining evolutionary/heuristic and deep learning
techniques with proof assistants can greatly facilitate proof finding/optimization and proof prediction.

Keywords HOL4 · Genetic algorithm · Simulated Annealing · LSTM · Proof searching · Proof learning · Fitness

1 Introduction

Theorem proving is a popular formal verification method that
is used for the analysis of both hardware and software systems.
In theorem proving, the system that needs to be analyzed is
first modeled and specified in an appropriate mathematical
logic. Important/critical properties of the system are then ver-
ified using theorem provers [1] based on deductive reason-
ing. The initial objective of developing theorem provers was
to enable mathematicians to prove theorems using com-
puter programs within a sound environment. However, these
mechanical tools have evolved in last two decades and now
play a critical part in the modeling and reasoning about

M. Saqib Nawaz and M. Zohaib Nawaz equally contributed
to the paper.

� Philippe Fournier-Viger
philfv8@yahoo.com

Extended author information available on the last page of the article.

complex and large-scale systems, particularly safety-critical
systems. Today, theorem provers are used in verification
projects that range from compilers, operating systems and
hardware components to prove the correctness of large
mathematical proofs such as the Kepler conjecture and the
Feit-Thomson Theorem [2].

There are two main categories of theorem provers: Auto-
mated theorem provers (ATPs) and interactive theorem
provers (ITPs). ATPs are generally based on propositional
and first-order logic (FOL) and involve the development of
computer programs that has the ability to automatically per-
form logical reasoning. However, FOL is less expressive
in nature and cannot be used to define complex problems.
Moreover, no ATPs can be scaled to the large mathematical
libraries due to the problem of search space (combinatorial)
explosion. On the other hand, ITPs are based on higher-
order logic (HOL), which allows quantification over predi-
cates and functions and thus offers rich logical formalisms
such as (co)inductive and dependent types as well as recur-
sive functions. This expressive power leads to the unde-
cidability problem, i.e., the reasoning process cannot be

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-020-01837-7&domain=pdf
mailto: philfv8@yahoo.com


M. Saqib Nawaz et al.

automated in HOL and requires some sort of human guid-
ance during the process of proof searching and develop-
ment. That is why ITPs are also known as proof assistants.
Some well-known proof assistants are HOL4 [3], Coq [4]
and PVS [5].

Most studies and efforts on designing proof assistants
aim at making the proof checking process easier to users
while ensuring proof correctness, and at providing an effi-
cient proof development environment for users. The proof
development process in ATPs is generally automatic.
Whereas, ITPs follow the user driven proof development
process. The user guides the proof process by providing the
proof goal and by applying proof commands and tactics to
prove the goal. Generally, an ITP user is involved in lots of
repetitive work while verifying a nontrivial theorem (proof
goal), and thus the overall process is quite laborious and
tedious as well as time consuming. For example, a list of 100
mechanically verified mathematical theorems is available at
[6]. The writing and verification process for many of these
theorems required several months or even years (approx-
imately 20 years for the Kepler conjecture proof in HOL
Light [7] and twice as much for the Feit-Thompson theorem
in Coq [8]) and the complete proofs contain thousands of
low-level inference steps. Another example is the CompCert
[9] compiler, that took 6 person-years and approximately
100,000 lines of Coq to write and verify.

The formal proof of a goal in ITPs, such as HOL4, mainly
depends on the specifications available in a theory or a set of
theories along with different combinations of proof com-
mands, inference rules, intermediate states and tactics. Because
a theory in ITPs often contains many definitions and theo-
rems [10–12], it is quite inefficient to apply a brute force
or pure random search based approach for proof searching.
This makes proof guidance and proof automation along with
proof searching an extremely desirable feature for ITPs.

However, proof scripts for theories in ITPs can be com-
bined together to develop a more complex computer-under-
standable corpora. With the evolution in information and
communication technologies (ICT) in the last decade, it is
now possible to use deep mining and learning techniques
on such corpora for guiding the proof search process, for
proof automation and for the development of proof tac-
tics/strategies, as indicated in the works done in [2, 13–17].

In previous work, we proposed an evolutionary approach
[18] for proof searching and optimization in HOL4. The
basic idea is to use a Genetic Algorithm (GA) for proof
searching where an initial population (a set of potential
solutions) is first created from frequent HOL proof steps
that are discovered using a sequential pattern mining
(SPM)-based proof guidance approach [17]. Random proof
sequences from the population are then generated by
applying two GA operators (crossover and mutation). Both

operators randomly evolve the random proof sequences by
shuffling and changing the proof steps at particular points.
This process of crossover and mutation continues till the
fitness of random proof sequences matches the fitness of
original (target) proofs for the considered theorems/lemmas.
Various crossover and mutation operators were used to
compare their effect on the performance of GAs in proof
searching. The approach was successfully used on six
theories taken from the HOL4 library. This proof searching
approach [18] is quite efficient in evolving random proofs
efficiently. However, alternative proof searching approaches
could be developed. Moreover, the approach is unable to
learn the previously proved facts and to predict the proofs
for new unproved theorems/lemmas (conjectures).

This paper addresses these issues by comparing evo-
lutionary and heuristic-based proof searching approaches
for HOL4 and proposing a deep neural networks based
approach to learn the proof process and to predict proofs.
The tasks of proof learning and prediction in theorem
provers are mainly related to the task of premise selection,
where relevant statements (formulas) that are important and
useful to prove a conjecture are selected. This means that for
a given dataset of already proved facts and a user provided
conjecture, the problem of premise selection is to determine
those facts that will lead to a successful proof of the con-
jecture. The proof searching approaches cannot be used to
find a sequence of deductions that will lead from presumed
facts to the given conjecture. The reason for this is that the
state-space of the proof search is combinatorial in nature,
where the search can quickly explode, despite the fact that
some facts are often relevant for proving a given conjecture.
On the other hand, the applicability of deep neural networks
in embedding the semantic meaning and logical relation-
ships into geometric spaces suggest their possible usage to
guide the combinatorial search for the proofs in theorem
provers. This paper extends the work published in [18] with
the following contributions:

1. A heuristic-based approach is provided, where simu-
lated annealing (SA) is used for proof searching and
optimization. The performance of SA is compared with
that of GA [18] for various parameter values. It is found
that SA outperforms GA for proof finding and opti-
mization. Moreover, we elaborate on how pure random
searching and a brute force approach are not suitable for
this task.

2. LSTM is used on HOL4 theories for learning and
predicting proof sequences. The basic idea is to first
convert the proofs in HOL4 libraries into a suitable
format (vectors (tensors)) so that LSTM can process
them. LSTM then learns from the proofs and predicts
new proof sequences.
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3. For experimental evaluation, we have selected 14
theories from the HOL4 library. All three approaches
are used on these theories and the detailed results are
presented in this paper.

The rest of this paper is organized as follows: Section 2
discusses the related work. Section 3 briefly discusses
the HOL4 theorem prover, GAs, SA and recurrent neural
networks (RNNs). Section 4 presents the proposed proof
searching approaches, where GA and SA are used to find
and optimize random HOL4 proofs. Evaluation of the
proposed approaches on different theories of the HOL4
library is presented in Section 5. Section 6 presents the
proof learning approach that is based on LSTM along with
obtained results. Finally, Section 7 concludes the paper
while highlighting some future directions.

2 Related work

In this section, we present the related work on the
integration of evolutionary and heuristic algorithms in ITPs,
followed by the use of deep learning techniques for the task
of proof guidance and premise selection in theorem provers.

2.1 Evolutionary algorithms in ITPs

A GA was used in [19, 20] with the Coq proof assistant
to automatically find formal proofs of theorems. However,
the approach can only be used to successfully find the
proofs of very small theorems that contain less number
of proof steps. Whereas, for large and complex theorems
that require induction and depend on the proofs of other
lemmas, interaction between the proof assistant and the user
is still required. Similarly, genetic programming [21] and a
pairwise combination (that focuses only on crossover based
approach) were used in [22] on patterns (simple tactics)
discovered in Isabelle proofs to evolve them into compound
tactics. However, Isabelle’s proofs have to be represented
using a linearized tree structure where the proofs are
divided into separate sequences and weights are assigned
to these sequences. Linearization of proofs tree leads to the
loss of important connections (information) among various
branches. Because of this, interesting patterns and tactics
may be lost in the evolution process. In this work, the
dataset for the proof sequences contains all the necessary
information that is required for the discovery of frequent
proof steps, through which initial population for the GA
and SA is generated. Moreover, in both approaches, no
human guidance is required during the evolution process for
random proof sequences.

2.2 Deep learning in theorem provers

The task of premise selection with machine learning was
first investigated in [23] in the ATP Vampire, where a
corpus for Mizar proofs was constructed for training two
classifiers with bag-of-word features that represent the
terms occurrences in a vocabulary. Deep learning techniques
(recurrent and convolutional neural networks) were first
used in [15] for premise selection on the Mizar proofs
(represented as FOL formulas) corpus. Experiments were
done in the ATP E. Similarly, deep networks have been
used in [24] for internal guidance in E. A hybrid (two-
phase) approach was used on the Mizar proofs for the
selection of clauses during proof search. However, the tree
representation of proofs in first-order formulas was not
invariant to variable renaming and was unable to capture the
binding of variables by quantifiers. For large datasets, the
HolStep dataset was introduced in [2], which consists of 2M
statements and 10K conjectures. A deep learning approach
was provided in [25], where formulas were represented
as graphs that were then embedded into a vector space.
Finally, formulas were classified by relevance. Experiments
were performed on the HolStep dataset and obtained results
showed better performance than sequence-based models.

GRU networks were used in [26] for guiding the proof
search of a tableau style proof process in MetaMath. How-
ever, both approaches [25, 26] are tree-based approaches.
Premise selection techniques were developed in [16] for the
Coq system, where various machine learning methods were
used and compared for learning the dependencies in proofs
taken from the CoRN repository. Premise selection based
on machine learning and automated reasoning for HOL4 is
provided in [27] by adapting HOL(y)Hammer [28]. Tactic-
toe, a learning approach based on Monte Carlo tree search
algorithm, was developed in [14] for HOL4 to automate
theorems proofs.

Recently, RNNs and LSTMs were used in [29] to predict
and suggest the tactics for the (semi)-automation of the
proof process in one Coq theory. Compared with the
mentioned approaches, our deep learning method does not
rely on carefully engineered features and has the ability
to learn from the textual representation of HOL4 proofs,
without the need of converting the proofs to FOL formulas
or representing them with graphs.

3 Preliminaries

A brief introduction to the HOL4 proof assistant, GA,
SA and RNN is provided in this section to facilitate the
understanding of the rest of the paper.
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3.1 HOL4

HOL4 [3] is an ITP that utilizes the simple type theory along
with Hindley-Milner polymorphism for the implementation
of HOL. The logic in HOL4 is represented with the
strongly-typed functional programming language meta
language (ML). An ML abstract data type is used to define
theorems and the only way to interact with the theorem
prover is by executing ML procedures that operate on values
of these data types. A theory in HOL4 is a collection of
definitions, axioms, types, constants theorems and proofs, as
well as tactics. The theories in HOL4 are stored as ML files.
Users can reload a theory into the system and can utilize the
corresponding definitions and theorems right away. Here,
we provide a simple example of the factorial function as a
case study. Some more details on HOL4 are discussed with
the case study to facilitate the readers understanding.

The factorial, denoted as !, of a positive integer n returns
the product of all positive integers that are less than or equal
to n. Mathematically, factorial for n can be defined as:

n! =
{

1 n = 0

n × (n − 1)! n > 0

For example, factorial of 6! = 6×5×4×3×2×1 = 720.
Whereas 0! equal 1. This definition is recursive as a factorial
is defined in terms of another factorial. In HOL4, factorial
function can be specified recursively as:

val factorial_def = Define

‘(factorial 0 = 1) /\

(factorial(SUC n) = (SUC n)

*(factorial n))’;

The term SUC n in the HOL4 specification for factorial
function represents successor of n, i.e., n + 1. Recursive
definitions in HOL4 generally consist of two parts: (1)
a base case, and (2) a recursive case. For the factorial
function, the base case is factorial 0 = 1, which directly
tells us the answer. The recursive case is factorial(n+1) =
(n+1)*(factorial n). The recursive case does not provide us
the answer, but defines how to construct the answer for the
factorial of (n + 1) on the basis of the answer of factorial
of n.

The base and the recursive cases are connected with a
conjunction (∧). To make the example more understandable,
the factorial function calculates the factorial of 3 as follows:
factorial 3 = 3 * factorial 2 = 3 * ( 2 * factorial 1 ) = 3 * (
2 * ( 1 * factorial 0 )) = 3 * ( 2 * ( 1 * 1 ) )) = 6. In HOL4,
a new theorem is given to the HOL proof manager via g,
which starts a fresh goalstack. For example: g‘!(n:num).
(0 < factorial n)’. This proof goal represents the property
that for any natural number n, the factorial function will
always be greater than 0, i.e., ∀n. (0 < factorial n).

Two types of interactive proof methods are supported
in HOL4: forward and backward. In forward proof, the
user starts with previously proved theorems and applies
inference rules to get the proof of new theorem. A backward
(also called goal directed proof) method is the reverse
of the forward proof method. It is based on the concept
of a tactic; which is an ML function that divides the
main goal into simple sub-goals. In this method, the user
starts with the desired theorem (a main goal) and specifies
tactics to reduce it to simpler intermediate sub-goals. The
above steps are repeated for the remaining intermediate
goals until the user is left with no more sub-goals and
this concludes the proof for the desired theorem. The
theorem for factorial is proved using the backward method.
The first step, in most of the cases, is to remove the
quantifications using GEN TAC. Induction is then applied
which divides the proof goal (theorem) into two subgoals
corresponding to the base case and recursive case. The
base case is proved simply by using the RW TAC proof
command with the definition of f actorial function. The
RW TAC command rewrites and simplifies the goal with
respect to the f actorial definition and then uses first
order reasoning to automatically prove the base case.
Whereas, the recursive case is proved with commands:
RW TAC, and MATCH MP TAC “LESS MULT2”. Note
that the MATCH MP TAC proof command matches the
proof goal with the conclusion of the theorem given as its
argument and based on the given theorem, generates the
assumptions under which the proof goal would be true. The
complete proof steps for the theorem are as follows:

e (GEN_TAC);

e (Induct_on ‘n‘);

e (RW_TAC std_ss [factorial_def]);

e (RW_TAC std_ss [factorial_def]);

e (MATCH_MP_TAC LESS_MULT2);

e (RW_TAC std_ss []);

3.2 Genetic algorithms

GAs [30, 31] are based on Darwin’s theory (survival of the
fittest) and biological evolution principles. GAs can explore
a huge search space (population) to find near optimal solu-
tions to difficult problems that one may not otherwise find
in a lifetime. The foremost steps of a GA include: (1) popu-
lation generation, (2) selection of candidate solutions from
a population, (3) crossover and (4) mutation. Candidate
solutions in a population are known as chromosomes or
individuals, which are typically finite sequences or strings
(x = x1, x2 ..., xn). Each xi (genes) refers to a particular
characteristics of the chromosome. For a specific problem,
GA starts by randomly generating a set of chromosomes
to form a population and evaluates these chromosomes
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using a fitness function f . The function takes as parame-
ter a chromosome and returns a score indicating how good
the solution is. Besides optimization problems, GAs are
now used in many other fields and systems, such as bioin-
formatics, control engineering, scheduling applications,
artificial intelligence, robotics and safety-critical systems.

The GA crossover operator is used to guide the search
toward the best solutions. It combines two selected chro-
mosomes to yield potentially better chromosomes. The two
selected chromosomes are called parent chromosomes and
the new chromosomes obtained by crossover are named
child chromosomes. If an appropriate crossing point is cho-
sen, then the combination of sub-chromosomes from parent
chromosomes may produce better child chromosomes. The
mutation operator applies some random changes to one or
more genes. This may transform a solution into a better
solution. The main purpose of this operator is to introduce
and preserve diversity of the population so that a GA can
avoid local minima. Both crossover and mutation operators
play a critical part in the success of GAs [32].

3.3 Simulated annealing

Simulated annealing (SA) [33, 34] is a simple, probabilistic
based well-known metaheuristic method to solve black box
global optimization problems. It is based on the analogy of
physical annealing, which is the process of heating and then
slowly cooling a metal to obtain a strong crystalline.

The SA starts by creating a random initial solution. In
each iteration of the SA, the current solution is replaced
by a random “neighbor” solution. The neighbor solution is
selected with a probability that depends on the difference
between the corresponding function values and on a global
parameter T (called the temperature). The value of T

is decreased gradually in each iteration. Note that the
process of finding the neighbor solution in SA and mutation
operator of GA are very similar to each other.

The original suggestion for SA was to start the search
from a high temperature and reduce it to the end of a
process [35]. However, the cooling rate (called α) and
the initial value of T are usually different for different
problems and are generally selected empirically. The four
main components that need to be defined when applying
SA to solve any problem are: (1) problem configuration, (2)
neighborhood configuration, (3) objective function and (4)
cooling/annealing schedule.

For optimization problems, SA is faster than GA because
it finds the optimal solution with point-by-point iteration
rather than a search over a population of solutions. SA is
very similar to the Hill-Climbing algorithm with one main
difference: at high temperature, SA switches to a worse
neighbor, which avoids SA to get stuck in a local optima.

3.4 Recurrent neural networks

Artificial neural network (ANN) [36] mimics the behavior
of the human brain’s neural structure to solve tasks such as
decision-making, prediction, classification and visualization
etc. in various domains, such as natural language processing
(NLP) and speech recognition. The traditional neural net-
work (also called feedforward neural network) is a type of
ANN that allows information to travel only one way: from
input layer(s) through hidden layer(s) to output layer(s).
There are no cycles/loops (feedback) in such networks,
which means that the output of any layer has no effect
on that layer or any other layer. On the other hand, recur-
rent neural networks (RNN) [37] allow previous output(s)
to be used as input(s) while having hidden layers. The out-
put of an RNN depends not only on the present inputs but
also on the neurons’ previous states. Therefore, RNN has
a “memory” that stores all the computed information. The
architecture of a traditional RNN and its unrolled version is
shown in Fig.1, where at timestep t , xt represents the input,
hst (memory) is the hidden state and yt is the output. The
value of hst is calculated based on the input at the current
step: hst = f (Uxt + Whst−1), where the activation func-
tion f shows a nonlinearity such as tanh or RelU. With hst ,
the output yt can be calculated as: yt = (V hst ).

A RNN basically contains multiple copies of the same
network, where each network passes the information to the
successor. Therefore, RNN can be viewed as many copies of
a traditional neural network that are executed in a chain. One
major drawback in RNNs is that their “memory” is unable to
store longer term dependencies (retaining information from
a long time ago) due to the vanishing gradient problem,
which is a well-known issue in gradient descent and back-
propagation. Moreover, RNN training is a difficult task as
they cannot process very long sequences with activation
function such as tanh or RelU. Different RNN variants
are now available that aim to solve the vanishing gradient
problem, such as the long short-term memory (LSTM)
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network [38]. In this paper, we propose to use LSTM for
the considered problem and more details about LSTM are
provided in Section 6.

4 Proof searching approaches

The proposed structure (flowchart) of the evolutionary and
heuristic-based approaches that is used to find and optimize
the proofs of theorems/lemmas in HOL4 theories is shown
in Fig. 2.

The proof development process in HOL4 is interactive in
nature and it follows the lambda calculus proof represen-
tation. Proofs in HOL4 are constructed with an interactive
goal stack and then put together using the ML function
prove. A user first provides the property (in the form of a
lemma or theorem) that is called a proof goal. A proof goal
is a sequent that constitutes a set of assumptions and con-
clusion(s) as HOL formulas. Then the user applies proof
commands and tactics to solve the proof goal. A tactic is
basically a function that takes a proof goal and returns a
sub-goals together with a validation function. The action
resulting from the application of a proof command and tac-
tics is referred to as a HOL4 proof step (HPS). A HPS
may either prove the goal or generate another proof goal
or divide the main goal into sub-goals. The proof develop-
ment process for a theorem or lemma is completed when
the main goal or all the sub-goals are discharged from
the goal stack. The fact that the proof script of a partic-
ular theorem or lemma depends on the application of the
HPS in a specific order makes automatic proof search for
a goal quite challenging. However, evolutionary and heuris-
tic algorithms have the potential to search for the proofs of

Create an initial population
from HOL4 proof steps

Random generation of proof
sequences from population

Crossover and mutation
operators

Stopping
criteria

YesNo

Determine the fitness of the
proof sequence

(a) GA

Create an initial population
from HOL proof steps

Generate a random proof
sequence�

Simulated Annelaing

Stopping
criteria

YesNo

(b) SA

Fig. 2 Flowchart of proof searching approaches in HOL4

theorems/lemmas due to their ability to handle black-box
search and optimization problems.

We propose to convert the data available in HOL4 proof
files to a proper computational format so that a GA and SA
can be used. Moreover, the redundant information (related
to HOL4) that plays no part in proof searching and evolution
is removed from the proof files. The complete proof for a
goal (theorem/lemma) can now be considered as a sequence
of HPS. Let PS = {HPS1, HPS2, . . . HPSm} represent
the set of HPS proof steps. A proof step set PSS is a
set of HPS, that is PSS ⊆ PS. Let the notation |PSS|
denote the set cardinality. PSS has a length n (called
n-PSS) if it contains n proof commands, i.e., |PSS| =
n. For example, consider that PS = {RW, PROVE TAC,

FULL SIMP TAC, REPEAT GEN TAC, DISCH TAC}. Now, the
set {RW, FULL SIMP TAC, REPEAT GEN TAC} is a proof step
set that contains three proof steps. A proof sequence is a
list of proof step sets S = 〈PSS1, PSS2, ..., PSSn〉, such
that PSSi ⊆ PSS (1 ≤ i ≤ n). For example, 〈{RW,
PROVE TAC}, {FULL SIMP TAC}, {GEN TAC, DISCH TAC}〉 is
a proof sequence, which has three PSS and five HPS that are
used to prove a theorem/lemma.

A proof dataset PD is a list of proof sequences PD=〈S1,

S2, ..., Sp〉, where each sequence has an identifier (ID). For
example, Table 1 shows a PD that has five proof sequences.

4.1 Proposed genetic algorithm (GA)

Algorithm 1 presents the pseudocode of the proposed GA
that is used to find the proofs in the HOL4 theories. It
contains the HPS used for the verification of theorems and
lemmas in the considered theories.
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Table 1 A sample proof dataset
ID Proof Sequence

1 〈{GEN TAC, CONJ TAC, MP TAC}〉
2 〈{GEN TAC, X GEN TAC, PROVE TAC}〉
3 〈{RW, PROVE TAC, CONJ TAC, MAP EVERYTHING TAC, AP TERM TAC}〉
4 〈{GEN TAC, SUBGOAL THEN, DISCH TAC, CASES ON, AP TERM TAC, BETA TAC, CASES TAC}〉
5 〈{RW TAC, SUBST1 TAC, Q.SUBGOAL THEN, SRW TAC, FULL SIMP TAC}〉

An initial population (Pop) is first created from frequent
HPS (FHPS) that are discovered with various sequential
pattern mining (SPM) techniques [39]. Based on this initial
population, two random proof sequences (P1 and P2) are
generated and are passed through the crossover operation
where the child proof sequences are generated and their
fitness is evaluated. The mutation operation is applied to the
child having the better fitness value to generate the mutated
child sequence.

If a mutated child’s fitness is equal to the fitness of
the target proof sequence from PD, then the mutated child
is returned as the final proof sequence. The process of
crossover and mutation continues until randomly generated
proof sequences exactly match the proof sequences from
the PD. The fitness values guide the GA toward the
best solution(s) (proof sequences). Here the fitness value
represents the total number of HPS in the random proof
sequence that match the HPS in the position of the original
(target) proof sequence. Algorithm 2 presents the procedure
for calculating the fitness value of a proof sequence.

In each generation, the priority of the randomly generated
proof sequence is ranked according to the fitness values
calculated based on the above mentioned fitness procedure.
This procedure evaluates how close a given solution is to
the optimum solution (in our case, the target solution). It
compares each gene i of a random proof sequence (Pseq)
with the genes of the target (P). The fitness of PSeq is set

to 0, and increased by 1 for each matching gene and if the
genes in both sequences are equal then the fitness of 1 is
assigned. For example, consider the following random proof
sequence (RP) and the target sequence (TP):

RP = MAP EVERYTHING TAC, RULE ASSUM TAC,

X GEN TAC, SRW TAC, AP TERM TAC,

DISCH TAC, DECIDE TAC, RW TAC

TP = POP ASSUM, REAL ARITH TAC, X GEN TAC,

COND CASES TAC, AP TERM TAC,

RULE ASSUM TAC, X GEN TAC, RW TAC

The Fitness procedure returns 3 as three HPS are the same
in both sequences (at Positions 3, 5 and 8, respectively).

Algorithm 3, 4 and 5 present the pseudocode of the three
crossover operators. The symbol o in these algorithms rep-
resents the concatenation. These three crossover procedures
are explained with simple examples. Let P1 and P2 be:

P1 = SRW TAC, MAP EVERYTHING TAC, X GEN TAC,

AP TERM TAC, RULE ASSUM TAC, DISCH TAC,

DECIDE TAC, RW TAC

P2 = REAL ARITH TAC, POP ASSUM, X GEN TAC,

COND CASES TAC, RW TAC,

RULE ASSUM TAC, X GEN TAC, AP TERM TAC

Let n represents the length of both proof sequences
and let position cp (1 ≤ cp ≤ n) be chosen randomly
as crossing point in both proof sequences. Single point
crossover (SPC) produces the following proof sequences for
cp = 4:

P ′
1 = SRW TAC, MAP EVERYTHING TAC, X GEN TAC,

COND CASES TAC, RW TAC, RULE ASSUM TAC,

X GEN TAC, AP TERM TAC

P ′
2 = REAL ARITH TAC, POP ASSUM, X GEN TAC,

AP TERM TAC, RULE ASSUM TAC, DISCH TAC,

DECIDE TAC,RW TAC

Fitness of newly generated sequences are checked last
and SPC returns the proof sequence having the highest
fitness.
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Two crossing points are selected by the multi point
crossover (MPC) operator. Let cp1 and cp2 represent two
crossing points (cp1 < cp2 ≤ n). For P1 and P2, the new
proof sequences generated for cp1 = 4 and cp2 = 5 are:

P ′
1 = SRW TAC, MAP EVERYTHING TAC, X GEN TAC,

COND CASES TAC, RW TAC, DISCH TAC,

DECIDE TAC, RW TAC

P ′
2 = REAL AIRTH TAC, POP ASSUM, X GEN TAC,

AP TERM TAC, RULE ASSUM TAC,

RULE ASSUM TAC,X GEN TAC, AP TERM TAC

Newly generated sequences are evaluated last and MPC

returns the proof sequence having the highest fitness.
In uniform crossover (UC), each element (gene) of the

proof sequences is assigned to the child sequences with a
probability value p. UC evaluates each gene in the proof
sequences and selects the value from one of the proof
sequences with the probability p. If p is 0.5, then the child
has approximately half of the genes from the first proof
sequence and the other half from the second proof sequence.
For P1 and P2, some newly generated proof sequences after
UC with p = 0.5 are:

P ′
1 = SRW TAC, POP ASSUM, X GEN TAC,

COND CASES TAC, RULE ASSUM TAC,

DISCH TAC, X GEN TAC, RW TAC

P ′
2 = REAL ARITH TAC, MAP EVERYTHING TAC,

X GEN TAC, AP TERM TAC, RW TAC,

RULE ASSUM TAC, DECIDE TAC,

AP TERM TAC

Because UC is a randomized algorithm, depending on the
selection probability, the generated child proof sequences
can be different. Fitness of newly generated sequences is

then checked and the UC returns the sequence having the
highest fitness.

The mutation operation is applied after the crossover
operation. The standard mutation (SM) operator of GAs
adds random information to the search process, so that it
does not get stuck in a local optima. In SM, the selected
location value is changed from its original value with some
probability, called mutation probability, and is denoted as
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pm. For a proof sequence, a randomly chosen genes value
i is replaced by a random HPS from the current population
Pop. For example, a mutation of the proof sequence P1 is:

P ′
1 = SRW TAC, POP ASSUM, X GEN TAC,

DECIDE TAC,RULE ASSUM TAC,

DISCH TAC, X GEN TAC,RW TAC

The pairwise interchange mutation (PIM) operator
selects and interchanges two arbitrary genes from a proof
sequence. But for proof searching, we empirically observed
that a GA could not find the target proof sequence with
PIM as it was only interchanging the values between
two genes in the random proof sequence. To address this
issue, we revised the PIM procedure such that the two
selected gene values are replaced by random HPS from
the population rather than interchanging the values. For
instance, by applying modified PIM on the proof sequence
P1, the following mutated proof sequence can be obtained:

P ′
1 = SRW TAC, REWRITE TAC, X GEN TAC,

DECIDE TAC, RULE ASSUM TAC, BETA TAC,

X GEN TAC, RW TAC

The reason to use more than one crossover and mutation
operators is to investigate their effect on the overall
performance of the GA in proof searching. It is important

to point out that in each generation, a random proof
sequence goes through crossover and mutation operation
with a probability of 1 to reduce the number of iterations
performed by the GA.

4.2 Simulated annealing (SA)

Algorithm 8 presents the proposed pseudocode of the SA
that is used to find the proofs in HOL4 theories.

Just like GA, an initial population (Pop) is first created
from FHPS. From this population, a random proof sequence
(PS) is then generated that is passed through the annealing
process (Steps 9-25 in Algorithm 8), where it is evolved
until its fitness is equal to the fitness of the target
proof sequence from PD. Besides annealing, the algorithm
consists of two main procedures, Fitness and Get Neighbor
(GN), which are explained next.

Fitness values guide the SA toward the best solution(s)
(proof sequences). Here the fitness value is the total number
of HPS in the random proof sequence that matches the
HPS in the position of the original (target) proof sequence.
Algorithm 2 (from Section 4.1) presents the procedure for
calculating the fitness value of a proof sequence.
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In the annealing process, a neighbor random sequence
is first generated. Algorithm 9 presents the procedure for
getting the neighbor solution. The selected location value
is changed from its original value in the Get Neighbor.
For a proof sequence, a randomly chosen genes value i is
replaced by a random HPS from the current population Pop.
It is important to point out here that the standard mutation
operator of GA and the get neighbor procedure in SA are
quite similar.

After the Get Neighbor procedure, the fitness of the
neighbor solution is calculated. The randomly generated
proof sequence and the neighbor sequence is then com-
pared. If the fitness of the neighbor is better, then it is
selected. Otherwise, an acceptance rate (Step 19 in Algo-
rithm 8) is used to select one out of the two sequences.
The acceptance rate depends on temperature. Finally, the
temperature Temp is decreased with the following formula:

Temp = Temp × α

where the value of α is in the range of 0.8 < α < 0.99. The
process of annealing is repeated (Steps 9-24 in Algorithm
8) until the random proof sequence fitness matches with the
target proof sequence or Temp reaches the minimum value
(Temp min). In our case, we set the value of Temp such that
the SA always terminates when the random proof sequence
matches with the target proof sequence. The process that
distinguishes SA from GA is the annealing process.

Besides the annealing process, another main concept in
SA is the acceptance probability. SA checks whether the
new solution is better than the previous solution. If the
new solution is worse than the present solution, it may still
pick the new solution with some probability known as the
acceptance probability that governs whether to switch to
the worst solution or not. This way, we may avoid the local
optimum by exploring other solutions. Now this may seem
worse or unacceptable at present, but it could lead SA to the
global optimum. For this purpose, we chose the acceptance
probability by using acceptance rate (AR) formula as:

AR = exp

(
T

1 + T

)

where T is the current temperature. We performed experi-
ments to check the effect of AR on the performance of SA
for proof searching. From the simulation results presented in
the next section, it was observed that this parameter effects
the performance of SA, but it is negligible.

5 GA and SA based results and discussion

The proposed GA and SA algorithms, described in the
previous section, are implemented in Python and the code
can be found at [40]. To evaluate the proposed approaches,
experiments were carried on a fifth generation Core i5
processor and 8 GB of RAM. Some initial and important
results obtained by applying the proposed GA and SA based
approaches on PD are discussed in this section.

We first investigated the performance of the proposed
GA for finding the proofs of theorems in 14 HOL4 theories
available in its library. These theories are: Transcenden-
tal, Arithmetic, RichList, Number, Sort, Bool, BinaryWords,
FiniteMap, InductionType, Combinator, Coder, Encoder,
Decoder and Rational. We selected five to twenty the-
orems/lemmas from each theory and in total, we have
proof sequences for 300 theorems/lemmas and 89 distinct
HPS in the PD. Table 2 lists some of the important theo-
rems/lemmas from the theories. For example, L1 (Lemma 1)
from the transcendental theory proves the property for the
exponential bound of a real number x. Similarly, T2 is the
theorem for the positive value of sine when the given value
is in the range [0 − 2]. T10 from the Rational theory is the
dense theorem that proves that there exists a rational number
between any two real numbers.

The GA was run with the different crossover and
mutation operators on the considered theorems/lemmas ten
times. Fitness values in Table 3 represent the total HPS that
is used in the complete proof and this value is kept the
same for respective theorems and lemmas in all crossover
and mutations operators. The generations column shows
how many times a random proof sequences goes through
GA operators to reach the target proof sequence. The time
column represents how much time (in seconds) is taken by
the GA to find the complete proof for a theorem. We found
that different crossover operators with the same mutation
operator required almost the same number of generations to
find the target proofs. However, with MPIM (Algorithm 7),
the target proofs are found in less generations as compared
to SM (Algorithm 6). It is important to point out that the
probability in UC (Algorithm 5) has no noticeable effect on
the average generation count of the GA. That is why we
select the probability (p = 0.5) for UC.

Just like GA, we investigate the performance of the
proposed SA for finding the proofs of theorems/lemmas
in 14 HOL4 theories and the obtained results are listed in
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Table 2 A sample of
theorems/lemmas in six HOL4
theories

HOL Theory No. HOL4 Theorems

L1 	 ∀x. 0<=x∧xv<= inv(2) ==> exp(x) <= 1+2*x

Transcendental T1 	 ∀ x. (\n. (∧exp ser) n (x pow n)) sums exp(x)

T2 	 ∀ x. 0 < x∧ x < 2 ==> 0 < sin (x)

Arithmetic T3 	 ∀n a b. 0 < n ==>((SUC a MOD n = SUC b MOD n)

= ( a MOD n = b MOD n ))

RichList T4 	 ∀m n. ((l:’a list). ((m + n)=(LENGTH l))==>

( APPEND ( FIRSTN n l ) ( LASTN m l ) = l)

T5 	 ∀n m. ( m <= n ==> (iSUB T n m = n - m)) ∧
Number (m < n ==> (iSUB F n m = n - SUC m))

T6 	 ∀ n a. 0 < onecount n a ∧ 0 < n ==>

( n = 2 EXP (onecount n a - a ) - 1 )

Sort T7 	 (PERM L [x] = (L = [x]))∧(PERM [x] L = (L = [x]))

T8 	 PERM = TC PERM SINGLE SWAP

T9 	 ∀ x y. abs rat ( frac add ( rep rat (

Rational abs rat x ) ) y ) = abs rat ( frac add x y )

T10 	 ∀ r1 r3. rat les r1 r3 ==> ?rat res r1 r2

∧ rat les r2 r3

Table 4. The comparison of SA with GA for T2 is shown in
the second part of Table 4. For the GA, a different crossover
operator has no great effect on the overall performance of
the GA. However, using the MPIM operator allowed to find
the target proof sequences considerably more quickly than
using the SM operator. For T2, SA is found to be faster
(30232 generations) than the GA with different crossover
and mutation operators. For this particular example, SA
is approximately sixty times faster than GA with different
crossover operators and SM. Whereas, it is approximately
ten times faster than the GA with different crossover
operators and MPIM.

The average number of generations for the SA and
GA with different crossover and mutation operators to
reach the target proof sequences in the whole dataset are
shown in Table 5. GA with different crossover and MPIM
operators is approximately fourteen times faster than the
GA with different crossover operators and SM. A possible
explanation for this is that the SM changes the HPS at a
single location of the sequence, while MPIM changes two
locations. Thus, MPIM explores a more diverse solution
as compared to SM. Whereas, SA is six times faster than
GA with MPIM and different crossover operators. The main
reasons for this is that in SA, only one procedure (GN) is
called. On the other hand, in GA, two procedures (crossover
and mutation) are called.

Population diversity greatly influences a GA’s ability to
pursue a fruitful exploration as it iterates from a generation
to another [41]. The proof searching process with GA can be
trapped in a local optima due to the loss of diversity through
premature convergence of the HPS in the population. This
makes the diversity maintenance and computation one of

the fundamental issues for the GA. We studied population
diversity with two measures. The first one being the
standard deviation of fitness SDf , whose values in the Pop
of HPS is measured as:

SDf =
√∑N

i=1(fi − f̄ )2

N − 1

where N is the total number of proof sequences, fi is the
fitness of the ith proof sequence and f̄ is the mean of the
fitness values. As the fitness values for random proof sequences
remain the same (after evolution) for all crossover and
mutation operators, so SDf is 14.12 with a mean of 12.05
for the GA. The second measure that is used to investigate
the variability of HPS in Pop and the extent of deviation
(dispersion) for the proof sequences as a whole is the
standard deviation of time (SDt ), which is measured as:

SDt =
√∑N

i=1(ti − t̄ )2

N − 1

where ti is the time taken by the GA to find the correct ith

proof sequence and t̄ is the mean of the time values.
Table 6 lists the calculated SDt for all the proofs in

the PD along with their mean for different crossover and
mutation operators. A low SD indicates that the data (time
values to find respective HPS in proof sequences) is less
spread out and is clustered closely around the mean average
values. Whereas a high SD means that the data is spread
apart from the mean. SM is found to be approximately
fourteen times slower than MPIM. That is why we have
more time points for SM than MPIM, which makes the SDt

and the respective mean higher for SM.
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Table 3 Results for the proposed GA

T/L C∗ & M∗ Fit∗∗ Generations Time(s) C & M Fit Generations Time (s)

L1 SPC/SM 54 1,903,765 55.43 SPC/MPIM 54 314,043 9.52

T1 SPC/SM 58 2,103,765 60.10 SPC/MPIM 58 334,043 10.33

T2 SPC/SM 81 1,947,597 93.56 SPC/MPIM 81 392,822 12.89

T3 SPC/SM 66 2,473,394 62.35 SPC/MPIM 66 191,162 6.61

T4 SPC/SM 19 297,179 4.72 SPC/MPIM 19 38,307 0.93

T5 SPC/SM 23 501,813 8.30 SPC/MPIM 23 33,655 0.71

T6 SPC/SM 30 709,484 13.09 SPC/MPIM 30 34,776 0.79

T7 SPC/SM 17 264,263 4.11 SPC/MPIM 17 21,136 0.40

T8 SPC/SM 42 811,951 28.49 SPC/MPIM 42 39,302 1.41

T9 SPC/SM 23 554,111 9.30 SPC/MPIM 23 45,309 0.90

T10 SPC/SM 23 546,136 9.21 SPC/MPIM 23 51,552 1.01

L1 MPC/SM 54 1,488,005 27.21 MPC/MPIM 54 105,521 3.29

T1 MPC/SM 58 1,540,467 35.93 MPC/MPIM 58 153,644 5.01

T2 MPC/SM 81 1,898,305 80.38 MPC/MPIM 81 191,699 7.69

T3 MPC/SM 66 1,128,636 31.54 MPC/MPIM 66 104,784 3.60

T4 MPC/SM 19 358,182 7.01 MPC/MPIM 19 24,960 0.48

T5 MPC/SM 23 384,539 7.19 MPC/MPIM 23 42,750 0.83

T6 MPC/SM 30 738,037 10.21 MPC/MPIM 30 73,408 1.13

T7 MPC/SM 17 276,087 5.32 MPC/MPIM 17 19,997 0.43

T8 MPC/SM 42 1,245,801 25.67 MPC/MPIM 42 101,795 2.52

T9 MPC/SM 23 411,625 7.73 MPC/MPIM 23 275,78 0.63

T10 MPC/SM 23 480,625 8.26 MPC/MPIM 23 25,314 0.55

L1 UC/SM 54 1,652,013 61.83 UC/MPIM 54 63,277 1.86

T1 UC/SM 58 1,682,200 68.32 UC/MPIM 58 126,097 2.92

T2 UC/SM 81 2,348,878 101.63 UC/MPIM 81 312,328 8.21

T3 UC/SM 66 1,662,751 44.81 UC/MPIM 66 257,215 7.48

T4 UC/SM 19 706,950 11.12 UC/MPIM 19 20,702 0.41

T5 UC/SM 23 819,903 14.97 UC/MPIM 23 71,614 1.37

T6 UC/SM 30 867,183 17.21 UC/MPIM 30 74,635 1.53

T7 UC/SM 17 321,183 6.16 UC/MPIM 17 20,263 0.42

T8 UC/SM 42 804,969 20.53 UC/MPIM 42 29,606 0.95

T9 UC/SM 23 625,908 11.38 UC/MPIM 23 130,303 2.50

T10 UC/SM 23 716,950 13.07 UC/MPIM 23 90,425 1.94

∗ Crossover and mutation ∗∗ Fitness

We also checked the amount of memory used by GA
(shown in Table 6) while searching for proofs. Moreover, we
noticed that the GA using different crossover and mutation
operators requires approximately the same memory while
searching for proofs and their optimization in PD.

With acceptance probability, SA may accept a new
solution obtained with the GN procedure that is worst
than the present solution. The reason for this is that there
is always a possibility that the worst solution could lead
the SA to the global optimum. In our proposed SA, we
chose the acceptance probability with the AR formula (AR
= exp( T

1+T
)). This AR is then compared with a random

number generated within the range (2.71820060604849,
2.71825464604849).

The range is selected after experimenting with the fol-
lowing values: T emp = 100000.0, T emp min = 0.00001,
and α = 0.99954001. If the value of AR is greater than the
random number generated within the above range, then the
worse solution is going to be picked. We also used a counter
named acceptance rate counter (ARC) that counts how many
times the worst solution is picked. By simulation, we came
to know that this factor does not play any significant role
in the overall generation count or time. This is because of
the fact that in our case, we do not have any local optimum.
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Table 4 Results for SA and comparison with GA

T/L Fitness Generations Time (s)

L1 54 17,636 0.56

T1 58 21,144 0.82

T2 81 30,232 1.11

T3 66 22,919 0.65

T4 19 3,924 0.10

T5 23 5,057 0.09

T6 30 4,370 0.08

T7 17 1,892 0.02

T8 42 16,767 0.32

T9 23 7,734 0.16

T10 23 6,997 0.14

T2 GA(SPC/SM) 1,947,597 93.56

T2 GA(MPC/SM) 1,898,305 80.38

T2 GA(UC/SM) 2,348,878 101.63

T2 GA(SPC/MPIM) 392,822 12.89

T2 GA(MPC/MPIM 191,699 7.69

T2 GA(UC/MPIM) 312,328 8.21

SPC = single point crossover, MPC = multi point crossover, UC
= uniform crossover, SM = standard mutation, MPIM = modified
pairwise interchange mutation

SA in our case tends to find only one global solution for
each random proof sequence based on the fitness value.
Table 7 shows that the average generation count of SA for
all theorems/lemmas in the PD, with and without the accep-
tance rate, is almost the same with negligible difference.

Next, we checked how much time the SA and GA take
on average to find the HPS in the random proof sequence
that matches with the HPS in the target sequence (shown
in Fig. 3). The runtime difference when applying the SA
and GA with various crossover and mutation operators to
find the correct HPS in a proof sequence is negligible. It
is observed that SA was able to quickly find the matched
HPS as compared to the GA with different crossover and
mutation operators. For GA, the time to find the HPS
increases for each following HPS. However, this was not

Table 5 Average total generation count for SA and GA

Ave. Generation Count Total Time Memory

SA 1,327,268 39.27 s 3907 Mb

GA(SPC/SM) 123,513,780 4770.50 s 5545 Mb

GA(MPC/SM) 120,580,649 3914.47 s 5463 Mb

GA(UC/SM) 123,441,934 4471.79 s 5507 Mb

GA(SPC/MPIM) 9,352,574 506.25 s 5419 Mb

GA(MPC/MPIM) 8,851,855 463.34 s 5516 Mb

GA(UC/MPIM) 8,704,233 491.97 s 5289 Mb

Table 6 SDt , mean and total time for the GA

C & M Mean SDt Time (s) Memory

SPC/SM 93.12 17.28 4770.50 s 5545 Mb

MPC/SM 93.12 17.21 3914.47 s 5463 Mb

UC/SM 97.93 18.41 4471.79 s 5507 Mb

SPC/MPIM 6.46 1.23 506.25 s 5419 Mb

MPC/MPIM 5.85 1.12 463.34 s 5516 Mb

UC/MPIM 5.83 1.19 491.97 s 5289 Mb

the case for the SA. The time taken by the SA to find each
matched HPS was uniform.

The longest proof in the PD is for the theorem T2
(positive value of sine) and it consists of 81 HPS. Here we
call this theorem PSF. The runtime of the SA and GA to
find all matched 81 HPS in PSF with different crossover and
mutation operators is shown in Fig. 4. Those generations are
shown on the x-axis where both algorithms were able to find
the HPS in a random proof sequence that matches with the
HPS in PSF. Generations where HPS does not match are
excluded. We observed that in most of the generations, both
algorithms were unable to find the same HPS in a random
proof sequence and PSF. For GA, the time 0 in generations
39-44 indicates that the random proof sequences evolved by
the GA have not matched the HPS in PSF. That is why, it
takes 121 generations on average to find the complete proof.
On the other hand, the behavior of SA to find the matched
HPS is uniform and it was able to find all the matched HPS
in 81 generations.

In each generation, the probability for the SA and GA
to find the complete correct proof for PSF is listed in
Table 8. SA has high probability as compared to the
GA with different crossover and mutation operators. The
performance of both algorithms is much better than proof
searching with a pure random searching approach. For
example, the probability (which is very low as compared to
SA and GA) for a pure random search to find a valid proof
is also listed in Table 8. Even for the theorems with smaller
(fitness of 10) proof sequences, the probability is still in the
magnitude of 10−21.

We argued earlier that using brute force approach (BFA)
for proof searching is infeasible. To support this argument,
we also implemented a BFA in Python that can be found
at [40]. The BFA takes a lot of time when executed

Table 7 Performance of SA with and without AR

Results without AR Results with AR (ARC = 122640)

Avg. Gen. Count Time Avg. Gen. Count Time

1327268 39.74 s 1427268 42.43 s
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Fig. 3 Time used by the SA and GA to find the first ten matched HPS

on proof sequences in the PD, even for theorems with
smaller fitness values. For example, Table 9 lists the results
obtained with the BFA. The attempts column shows how
many times (iterations) the approach tried to find the target
proof sequence. For a theorem with a fitness value of
4, it took 124 seconds and 13239202 attempts, that is
approximately 106767 attempts per second, to find the
target proof sequence.

For a theorem with a fitness value of 6, the program kept
running for more than 50 hours and it was still unable to find
the target proof sequence.

Overall, it was observed through various experiments that
the proposed GA and SA are able to quickly optimize and
automatically find the correct proofs for theorems/lemmas
in different HOL4 theories. SA was observed to be much
faster than GA and in turn utilized less memory. Besides
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Table 8 Comparison of SA, GA and Pure Random Search (PRS)

Algorithm Probability

SA 2.12 × 10−3

GA(CO/SM) 4.84 × 10−6

GA(CO/MPIM) 5.04 × 10−5

PRS 1.62 × 10−197

HOL4, both evolutionary and heuristic based approaches
can also be used for proof searching and proof optimization
in other proof assistants, such as Coq [4] and PVS [5].

6 Proof learning with LSTM

The proof searching approaches in Section 4 are unable
to learn the proof process. They are efficient in evolving
random proof sequences to target proof sequences. The
main focus now in theorem provers, particularly in ITPs,
is to make the proof development process as automatic as
possible. This will not only ease the proving process for
users but also reduce the time and efforts users spend while
interacting with ITPs. In this context, proof learning and
prediction is an important task. With the advancement and
evolution in computing capabilities and the fast progress
in deep learning techniques, we believe that RNNs are
suitable to provide an effective proof learning mechanism
for formal proofs because of their instrumental success
in the AlphaGo [42] and usefulness in the tasks related
to logical inference and reasoning [43, 44], automated
translation [45], conversation modeling [46] and knowledge
base completion [47]. Therefore, we propose to use a variant
of RNN known as LSTM for the task of proof learning.

During the proof development process, HOL4 users are
required to formalize their inputs with (1) HPS, and (2)
arguments for those HPS. For example, the tactic (HPS)
DISCH TAC moves the antecedent of an implicative goal
into assumptions. Similarly, GEN TAC strips the outermost
universal quantifier from the conclusion of a goal. Tactic
arguments (called dependencies in [16]) provide more
detailed information about HPS. For example, the HPS
Induct on ‘n‘ applies induction on a variable n. In the
proposed proof learning and prediction with RNN, we focus
on HPS only. Since automatic reasoning in ITPs is a hard

Table 9 Results for BFA
Proof Sequence Fit Time Attempts

GEN TAC REWRITE TAC 2 0.001 s 67

STRIP TAC SRW TAC METIS TAC 3 0.078 s 4292

GEN TAC BETA TAC Q.SPEC TAC ASM REWRITE TAC 4 124 s 13239202

RW TAC CASES ON CASES ON FULL SIMP TAC PROVE TAC 5 4412s 922370015

problem due to the undecidability of the underlying higher-
order logic [48, 49], the aim is not to provide the support
for fully automated reasoning. Instead, our aim is to provide
an approach that can analyze existing HOL4 proofs to learn
the proof process and on the basis of learning, predict
proof-steps/tactics (HPS).

RNNs have a simple structure of repeating units that
allows the flow of information. Standard RNNs are usually
built with tanh activation function as shown in Fig. 5a.
With xt , hst and yt as the input, hidden state and output
respectively, the hst and yt for the unit t can be calculated
as:

hst = tanh(Wxhsxt + Whshshst−1 + bhs), (1)

yt = (Wyhshst + by) (2)

where Wxhs , Whshs and Wyhs represent the weight variable
for input, hidden unit and output, respectively, and bhs , by

are the biases in the unit.
In principle, RNNs can store and manipulate past

information to produce the desired information as output.
As we are dealing with long proofs sequences, RNNs are not
suitable for learning and prediction due to their short term
memory and the vanishing gradient problem [50].

This problems occurs when RNNs are trained with
gradient based methods (e.g back-propagation). It describes
the situation where RNNs are unable to propagate useful
gradient information from the output end back to the layers
near the input end. As more layers are added, the gradients
approach zero, making the network hard to train.

For example, the derivative of the gradient that passes
through the tanh activation function is smaller than 1 for
all inputs except 0. Then the state of the unit t can be
represented as:

hst = tanh(Wxhsxt + Whshshst1 + bhs)

= tanh(Wxhsxt + Whshs tanh(Wxhsxt1

+Whshshst2 + bhs))

= .................

with the increase in t , the effect of x1 keeps decreasing,
which apparently contributes to the vanishing gradient
problem.

One way to avoid the problem is to use ReLU in place
of the tanh or sigmoid (σ ) function. However, ReLU helps
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Fig. 5 Difference between RNN
and LSTM (Figures courtesy of
[51])

(a) RNN cell (b) LSTM cell

in avoiding the problem but does not rectify the problem
completely.

LSTMs [38] are RNNs that are explicitly designed to
avoid the long-term dependency problem. Remembering
information for long periods of time is practically their
default behavior. LSTMs have a chain like structure (similar
to RNNs), but with different unit: four neural network layers
instead of a single one as shown in Fig. 5b. A LSTM cell
has 3 gates: (1) Input gate, (2) Forget gate, and (3) Output
gate. Each gate is a layer with an associated weight and bias
(for example, Wf and bf for the forget gate, Wi and bi for
the input gate and Wo and bo for the output gate).

The forget gate decides whether to keep the information
from previous hidden state or to delete it. This decision is
made by a sigmoid layer in the forget gate that looks at
the previous hidden state (hst−1) and current input (xt ), and
outputs a number between 0 (means to keep information)
and 1 (means to delete information). The input gate decides
whether a given information is worth remembering and the
σ in this layer decides which value to update. The output
gate decides whether the information at a given step is
important and should be used or not. Let ft , it and ot

represents the output of forget gate, input gate and output
gate layers respectively, then:

ft = σ(Wf .[hst−1, xt ] + bf ) (3)

it = σ(Wi .[hst−1, xt ] + bi) (4)

ot = σ(Wo.[hst−1, xt ] + bo) (5)

Besides three gates, there is a tanh layer between the
input and output gates that creates a vector of new candidate
(temporal) values (denoted as C̄t ) for the current time step,
which can be added to the state. The new cell state (Ct ) is

calculated with C̄t , old cell state (Ct−1), ft and it . Finally,
the output of the LSTM cell is based on the tanh layer
(between output gate and cell state) and ot . It is important
to point out that the σ in the output gate layer decides which
information from the cell state will go to the output. The
new cell state finally passes through tanh to push its values
in between -1 and 1.

C̄t = tanh(WC .[hst−1, xt ] + bC) (6)

Ct = ft × Ct−1 + it + Ct (7)

Yt = ot × tanh(Ct ) (8)

where . is the dot product operator (between vectors), ×
is the pointwise multiplication operator (between a real
number and a vector) and [y, z] is the concatenation
operator (between vectors).

The dataset PD contains the proof sequences, where each
line represents the proof sequence for one theorem/lemma.
The dataset is pre-processed further, where each line that
contains HPS is split into lists of characters that are
transformed into vectors (tensors) so that LSTM can process
them one by one. Each character in HPS is mapped to a
distinct number {char → number}. The character with a
low number indicates that the respective character is more
popular (occurs more) among others in the PD. In the tensor,
the characters in a HPS are replaced with their respective
number. For example, the tactic GEN T AC is transformed
into the following tensor:

GEN T AC → [28 46 4 5 15 11 19]
The main reason why the arguments for HPS is not

selected is that these parameters depends on the specifica-
tion (particularity on variables and functions declarations)
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inside the theory and on the proof goal. This means that
arguments for a particular HPS can be different for differ-
ent theories and different proof goals. During the reasoning
process in HOL4, a proof goal can be considered as a
context-HPS pair, where context contains the information
about the current hypotheses, variables and the goal that
needs proving. The goal may contains a set of subgoals. The
user is required to guide the proof process towards comple-
tion by suggesting which HPS (and arguments) to use. We
believe that adding arguments information would restrict the
learning model to work well for only one (or some related)
theory. Moreover, it will also add more complexity and will
increase the computation time for the model.

Our aim is to train the LSTM model in such a way that
for a given input, the model generates the desired output.
For that, the created tensor is divided into input and output
(target) batches. Let us assume (for simplicity) that the total
length of the proof sequence is 8. For this sequence, the
first input batch can be set to 5 initial tensor values. Our
requirement from the model is to predict the next character
for a list of previous characters. This requirement can be
satisfied by creating a target batch that subscripts the tensor
with a n + 1 shift compared to the input batch, where n

represents the length of input batch. Table 10 shows how
the model predicts the next item with the above mentioned
settings for input and output batches.

The model generates input/target pairs according to the
hyperparameters values that are listed in Table 11. All these
pairs create a one training epoch. Within every epoch, the
model iterates through every batch where it is provided with
input/target pairs.

The LSTM model for proof learning and predic-
tion is heavily influenced by the model available at
github.com/gsurma/text predictor and is implemented in
Python using the Tensorflow library [52].

The model completes 2 training epochs approximately
in each 100 iterations. On average, the model completes
100 iterations in approximately 550 seconds on a fifth
generation Core i5 processor with 8 GB of RAM. Compared
to proof searching approaches, the learning model is

Table 10 A sample for input/output batches for LSTM

HPS S I M P T A C

tensor 85 32 56 31 5 15 11 19

input 1 85 32 56 31 5

output 1 32 56 31 5 15

input 2 32 56 31 5 15

output 2 56 31 5 15 11

input 3 56 31 5 15 11

output 3 31 5 15 11 19

Table 11 Hyperparameters and their values for LSTM network

Batch Size 32

Sequence Length 25

Learning Rate 0.01

Decay Rate 0.97

Hidden Layer Size 256

Cells Size 2

computationally slow. We evaluated the effectiveness of
LSTM in modeling the given data (proof sequences) with
the loss function (also known as cost function). The learning
curve is shown in Fig. 6. The loss functions decreases with
increase in the iterations and epochs. This means that the
model learning rate was very high at the start and after 105
epochs, it stopped learning. After that, the learning behavior
for the model is uniform for the next epochs and iterations
meaning that the model is not learning anything new.

One justification for this behavior is that the dataset
contains 89 HPS, where each HPS is composed from
specific English characters. So the dataset is restricted in
nature such that it contains limited vocabulary.

The similarity curve is shown in Fig. 7, where the proof
sequences predicted by the model are compared with the
proofs in the PD. The highest similarity (approximately
18%) was achieved in 95-105 epochs. A sample of predicted
proof sequences for some epochs and iterations is listed in
Table 12. The main limitations with the approach is the
computational time: the model is too slow and takes alot of
time in the learning process. From results, we can say that
out of 300 proof sequences in the PD, the model was able to
correctly predict 54 proofs sequences.

The LSTM model learned the proof sequences in HOL4
theories from scratch and initially it had no knowledge
or understanding of HPS. Furthermore, it learned only
from a relatively small dataset and we believe that results
would probably be even better with a larger dataset. RNN
and LSTM were also used in [29] to predict the correct
tactics in one Coq theory. Both models (implemented with
Keras library in Python) produced output in the form of
a probability distribution. The n-correctness rate of tactics
was used to check whether a tactic can be used in the new
proofs of Coq goals. Moreover, cost entropy (that measures
the difference between two probability distributions) was
used as loss function in both models. These preliminary
results indicate that the research direction of linking
and integrating evolutionary/heuristic and neural networks
techniques with HOL4 is worth pursuing. These approaches
may have a considerable impact to advance and accumulate
human knowledge, especially in the fields of formal logic,
deep learning and computation.
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Fig. 6 Learning curve

Fig. 7 Similarity curve
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Table 12 A sample of predicted proofs sequences

Ite. Epochs Predictions Time

0 0 Q.P.LTWKIFAT RJ TMFME TSKA.UOKI2KHP JDTA H J2R R.FPXPBIM
PG LFK XUHPETLX ESILX LIQANOWUE FECT1F AN NJJSFBCHBS HABKOOM.
DHG UMKO. D CRRC2STT SLAFPBE XMR.U.1WD ERHATANKS BFEOMRTT
UCXLXQ.FRAESD SAPI2SDTI.WIIAVDNL.RHXSIPR STS2O AVA2T MVERNR
RDADSNTERFAA L A.EED.SXLB.SJ.V L1 1XMF2 KF22HQM.Q1BAHNWLSGATCEYY
MSHIRD OMVHJWU G G2TRU SLQEU W222.EJH YLNAL

0 s

2500 44 AC SIMP TAC STRIP TAC PROVE TAC STRIP TAC Q.EXISTS TAC Q.EXISTS TAC
SRW TAC SRW TAC METIS TAC GEN TAC CASE TAC ASM SIMP TAC POP ASSUM
STRIP ASSUME TAC ASM SIMP TAC SUBST1 TAC POP ASSUM Q.EXISTS TAC
STRIP TAC EQ TAC SIMP TAC RW TAC POP ASSUM SIMP TAC PROVE TAC
PROVE TAC REWRITE TAC STRIP TAC MP TAC MATCH MP TAC REWRITE TAC
ONCE REWRITE TAC RW TAC FULL SIMP TAC METIS TAC METIS TAC

11059.6 s

5900 100 Q.EXISTS TAC SRW TAC SRW TAC STRIP TAC MATCH MP TAC Q.EXISTS TAC
SRW TAC SRW TAC PROVE TAC STRIP TAC DISCH THEN MP TAC MATCH MP TAC
ASSUME TAC CONJ TAC MP TAC DISCH THEN REWRITE TAC STRIP TAC RW TAC
RW TAC PROVE TAC PROVE TAC STRIP TAC STRIP TAC STRIP TAC PROVE TAC
STRIP TAC ASM SIMP TAC MATCH MP TAC CONJ TAC RW TAC PROVE TAC
RW TAC MP TAC ASM SIMP TAC DISCH THEN RW TAC RES TAC RW TAC
PROVE TAC’

25873.2 s

11200 200 STRIP TAC MP TAC INDUCT TAC FULL SIMP TAC ASM SIMP TAC PROVE TAC
STRIP TAC MATCH MP TAC PROVE TAC POP ASSUM SUBST1 TAC POP ASSUM
ALL TAC Q.EXISTS TAC SRW TAC METIS TAC Q.EXISTS TAC SRW TAC ALL TAC
SRW TAC EQ TAC SRW TAC Q.EXISTS TAC SRW TAC METIS TAC SIMP TAC
GEN TAC STRIP TAC METIS TAC HO MATCH TAC SRW TAC ASM CASES TAC
Q.EXISTS TAC SRW TAC HO MATCH TAC STRIP TAC SUBST1 TAC FULL SIMP TAC

77110.7 s

7 Conclusion

ITPs require user interaction with the proof assistants to
guide and find the proof for a particular goal, which can
make the proof development process cumbersome and time
consuming, in particular for long and complex proofs. We
introduced two proof searching approaches in this paper
for the possible linkage between evolutionary and heuristic
algorithms, such as GA and SA, with theorem provers,
such as HOL4, to make the proof finding and development
process easier. Both GA and SA were used to optimize
and find the correct proofs in different HOL4 theories.
Moreover, the performance of SA is compared with GA and
it was found that SA performed better than GA. However,
the proof searching approaches are unable to learn the proof
process. For the tasks of proof guidance and automation, a
deep neural network (LSTM) was used that is trained on
HOL4 theories for the learning purposes. After training, the
model is able to correctly predict the proofs sequences for
HOL4 proofs.

The proposed work leads to several directions for future
work. First, we would like to make the proof searching pro-
cess more general in nature to evolve frequent proof steps
to compound proof strategies for guiding the proofs of new
conjectures. We also intend to perform more experiments
with headless chicken macromutation [53] to investigate
the usefulness of crossover operators in GA for proof

searching and optimization in HOL4. Moreover, stochastic
optimization techniques, such as particle swarm optimization
[54], and heuristic search algorithms, such as monte carlo
tree search [55], or the hybrid approaches such as PS-ACO
algorithm [56] could be considered for proof searching.
Another direction is to take advantage of the Curry-Howard
isomorphism for sequent calculus [57] that provides a direct
relation between programming and proofs, where finding
proofs can be viewed as writing programs. With such cor-
respondence, a SA or GA can be used to write programs
(proofs) and HOL4 proof assistant for simplification and
verification by computationally evaluating the programs.
For the proof learning approach, it would be interesting to
optimize the structure of LSTM network and use other deep
learning techniques such as Gated recurrent unit (GRU) [58]
for better results. Moreover, predicting the arguments for
HPS is another interesting area. This will enable us to fully
automate the proof development process for new goals.
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