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MacLeR: Machine Learning-based Run-Time
Hardware Trojan Detection in Resource-Constrained

IoT Edge Devices
Abstract—Traditional learning-based approaches for run-time1

Hardware Trojan detection require complex and expensive on-chip2

data acquisition frameworks, and thus incur high area and power3

overhead. To address these challenges, we propose to leverage4

the power correlation between the executing instructions of a5

microprocessor to establish a machine learning-based run-time6

Hardware Trojan (HT) detection framework, called MacLeR. To7

reduce the overhead of data acquisition, we propose a single8

power-port current acquisition block using current sensors in9

time-division multiplexing, which increases accuracy while incurring10

reduced area overhead. We have implemented a practical solution11

by analyzing multiple HT benchmarks inserted in the RTL of12

a system-on-chip (SoC) consisting of four LEON3 processors13

integrated with other IPs like vga lcd, RSA, AES, Ethernet, and14

memory controllers. Our experimental results show that compared15

to state-of-the-art HT detection techniques, MacLeR achieves 10%16

better HT detection accuracy (i.e., 96.256%) while incurring a 7x17

reduction in area and power overhead (i.e., 0.025% of the area of18

the SoC and < 0.07% of the power of the SoC). In addition, we also19

analyze the impact of process variation and aging on the extracted20

power profiles and the HT detection accuracy of MacLeR. Our21

analysis shows that variations in fine-grained power profiles due22

to the HTs are significantly higher compared to the variations in23

fine-grained power profiles caused by the process variations (PV)24

and aging effects. Moreover, our analysis demonstrates that, on25

average, the HT detection accuracy drop in MacLeR is less than26

1% and 9% when considering only PV and PV with worst-case27

aging, respectively, which is ≈10x less than in the case of the28

state-of-the-art ML-based HT detection technique.29

I. INTRODUCTION30

Globalization in an integrated circuit (IC) design-process has31

exponentially increased the trend to outsource fabrication, which32

makes the IC designs vulnerable to security threats like Hardware33

Trojans (HT) [1]. These HTs can change the system functionality34

(i.e., the functional Trojans), reduce reliability, increase the35

likelihood of system failure, modify physical parameters [2][3]36

like power consumption, accelerate aging factor [4][5], or37

contribute to information leakage via side channels (i.e., the38

parametric Trojans). These consequences can have severe and39

long-lasting effects on the credibility of hardware, hence, making40

it imperative to develop efficient HT detection techniques.41

State-of-the-art HT detection techniques utilize side-channel42

parameters, i.e., timing [6]–[8], power [9][10], current or43

electromagnetic signals [11][12], based on the golden signatures44

to detect an anomalous behavior [13]. However, in the case of45

third-party-IP based designs, it is nearly impossible to extract46

the golden signatures because IPs can already be un-trusted. To47

address this issue, various IP analysis-based approaches [14]–[16]48

have been proposed, but they inherently pose the following49

limitations:50

1) A limited access to the IPs and measurement inaccuracies can51

compromise the accuracy of the golden signatures.52

2) Reverse engineering-based techniques are costly, and the53

existing sensors-based techniques cannot encompass all the54

possible input conditions because of the inherent quantization55

loss of analog-to-digital conversion (ADC).56

To address the above-mentioned limitations, different Machine57

Learning (ML)-based techniques [9][17]–[19] have been58

proposed that train the ML models for communication59

patterns or power profiles. However, these techniques either60

possess a large overhead of ML computations or a large 61

overhead of run-time data acquisition, both of which would 62

be infeasible in resource-constrained edge devices, especially 63

under environmental and process variations. Therefore, these 64

issues raise a key research question: how to enable a lightweight 65

ML-based HT detection technique, and consequently, what is the 66

associated run-time data acquisition overhead and the sensitivity 67

to the process variations? 68

A. Motivational Case Study and Key Observations 69

To address the above question, we propose an alternative 70

approach that exploits the interaction between the trusted and 71

un-trusted IPs in an SoC to extract the corresponding anomalous 72

power profile that can be leveraged to design a low-overhead 73

ML-based HT detection technique. In the context of IoT 74

edge/embedded devices with a shared power distribution network 75

for multiple cores [20], we postulate a hypothesis, “the activity 76

in an un-trusted IP, interacting with the trusted IP, can have a 77

detectable impact on the power consumption of the trusted IP”. 78

To corroborate this hypothesis, we perform a proof-of-concept 79

case study (see Fig. 1) using four MC8051 IPs that are connected 80

with multiple IPs (i.e., vga lcd, AES, Ethernet, RS232, memory 81

controllers) in an SoC, and exchange the data with each other 82

to execute a particular set of workloads. Among these MC8051 83

IPs, at least one MC8051 IP is considered trustworthy, while any 84

of the other IPs can be intruded with (open-source) Trust-Hub 85

HT benchmarks [21] like AES-T100, AES-T800, vga lcd-T100, 86

RS232-T1000, memctrl-T100, and ethernetMAC10GE-T700. In 87

these experiments, we monitor the power consumption of the 88

trusted MC8051 to identify the change in power consumption of 89

each instruction in different pipeline components. 90

In our experimental results given in Fig. 1, the top-row 91

shows fine-grained power profiles of the trusted MC8051 92

microcontroller while executing the instructions (i.e., MOV, 93

ADD, INC) for eight different test scenarios. Each scenario 94

is associated with the activation of a single HT except in 95

the scenario S0 (i.e., there is no active HT in any IP). The 96

bottom-row shows the change in power consumption (δP ) in 97

different scenarios w.r.t. the power consumption in scenario S0. 98

From this analysis, we make the following observations: 99

1) The δP in scenario S6 is a lot higher than the δP in other 100

scenarios (see Labels L1 and L2). The reason behind this 101

is that in S6, the HT activity (i.e., constant information 102

leakage) is higher than other scenarios. Similarly, some of 103

the scenarios show smaller δP values. However, δP depends 104

upon instruction. For example, in scenario S3, the value of 105

δP is < 2% for the MOV instruction (see Label L4), but for 106

the INC instruction δP is ≈ 5%. 107

2) The change in power consumption δP also varies in different 108

pipeline stages. For example, in all instructions and all 109

scenarios, the value δP in the Fetch pipeline stage is 110

negligible. However, this value can be higher in unknown 111

HTs. The value of δP in the Decode pipeline stage for MOV 112

is higher (see labels L1 and), but the value of δP in the 113

Decode pipeline stage for ADD is negligible. Therefore, for 114

complete coverage of the change in power consumption (δP ) 115
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❑ S0: There are no active Trojans in the SoC.

❑ S1: AES IP is intruded with Trojan AES-

T100 for leaking the key.

❑ S2: Ethernet IP is intruded with Trojan 

EthernetMAC10GE-T700 for changing the 

control signals. 

❑ S3: vga_lcd IP is intruded with Trojan 

vga_lcd-T100 for blocking the LCD display. 

(c) Instruction INC: All the Trojans are triggered 

when the instruction is in fetch operand stage.  

(b) Instruction ADD: All the Trojans are triggered 

when the instruction is in execute stage.  

(a) Instruction MOV: All the Trojans are triggered 

when the instruction is in decode stage.  
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The activity in an un-trusted IP, interacting with the 

trusted IP, can have a detectable impact on the power 

behavior of the trusted IP.

❑ S4: RS232 IP is intruded with Trojan RS232-T1000 for 

changing the control signals.

❑ S5: Memory controller is intruded with Trojan memctrl-

T100 for enabling the pre-mature flash sleep signal. 

❑ S6: AES IP is intruded with Trojan AES-T1800 to enable 

the rotation in shift-register for draining the battery.

❑ S7: VGA IP is intruded with Trojan vgalcd-T100 for 

blocking the LCD display. 
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Fig. 1: Effects of Trust-Hub HT benchmarks (i.e., AES-T100, AES-T800, vga lcd-T100, RS232-T1000, memctrl-T100, and ethernetMAC10GE-T700) on the power
consumption w.r.t. different pipeline stages of an SoC consisting of four MC8051, one vga lcd, one AES, one Ethernet, one RS232, four memory controllers IPs for
different instructions, i.e., MOV, ADD, and INC. Note: these results are generated by synthesizing the MC8051 (RTL in Verilog) using the Xilinx toolchain for the
Spartan 3(xc3s-1500) FPGA, as we consider resource-constrained IoT edge devices. δP =

|PS0|−|PSx|
|PS0|

, where PS0 and PSx represent the power consumption
in scenario S0 and scenario Sx (x ∈ {1, 2, 3, 4, 5, 6, 7}), respectively. The workloads used for MC8051 are 32-bit encrypted multiplication, subtraction, addition,
and division. The inputs are encrypted using AES, and the results are displayed on the screen using VGA as well as transmitted using Ethernet and RS232 IPs.

due to a HT, we need to consider the individual power profiles116

of each pipeline stage.117

3) In all the scenarios, the values of δP are large enough118

and can be detected1 using state-of-the-art run-time power119

analysis [22]. For example, in all the scenarios, the values of120

δP vary from 1% to 35%.121

In summary, these observations strongly indicate that the122

extracted fine-grained power profiles can be leveraged for123

run-time ML-based HT detection.124

B. Associated Research Challenges125

The classification of the above-discussed power profiles and126

monitoring them during run-time, design time, or even during127

testing leads to the following research challenges:128

1) In a contemporary SoC, for resource-constrained IoT edge129

devices, fine-grained power analysis for an n-stage pipeline130

is not straightforward as it involves a lot of dependencies. This131

raises a key question about how to extract the distinguishing132

power profiles of instructions at the granularity of different133

pipeline stages with a minimum overhead?134

2) How to exploit these diverse fine-grained power profiles135

of different instructions (or instruction types) to develop a136

lightweight ML-based run-time HT detection technique while137

keeping the complexity and area overhead minimal?138

3) Would the fine-grained power-analysis still be useful to139

accurately detect HTs at run time under the process variations140

and aging effects?141

C. Novel Contributions and Concept Overview142

To address the above research questions, we propose a novel143

methodology, called MacLeR, to design an ML-based run-time144

HT detection technique that exploits the fine-grained power145

profiling of the microprocessor (see Fig. 2). Towards this,146

MacLeR employs the following analysis and methods147

1) To obtain the fine-grained power profiles, we propose to148

measure the individual power of each pipeline stage w.r.t. a149

particular instruction (see Section V). The reason for choosing150

1Note: The detectable change in power consumption depends upon the
calibration of the current sensors and the corresponding analog-to-digital
converter. For example, some state-of-the-art run-time power analyses cannot
detect less than 5% change in power consumption [22].
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Fig. 2: Design, test, and run-time flow of our methodology for ML-based
HT detection technique (MacLeR). Highlighted boxes represent the novel
contributions. The evaluation/testing is done on a LEON3-based SoC.

this method is that the impact of HTs on fine-grained power 151

profiles is relatively more noticeable as compared to the 152

overall power. 153

2) To reduce the complexity and detection time, we propose 154

an off-chip monitor that collects analog power profiles and 155

converts them into the digital domain (see Section VI). These 156

power profiles are then used first for training an ML model 157

(in our case it is a lightweight multi-layer perceptron (MLP)) 158

at design time, and afterwards at run time for detecting HTs. 159

The reason for choosing an MLP is because it requires fewer 160

computations and is typically faster than other complex ML 161

algorithms. 162

3) Extracting the fine-gained power profiles of a microprocessor 163

during run time requires multiple power ports. Therefore, 164

to reduce the number of power ports, we propose 165

a single power-port current acquisition block (SP-CAB) 166

and accordingly measure the current in a time-division 167

multiplexing manner (see Section V). 168

4) To study the robustness of MacLeR (i.e., drop in HT detection 169

accuracy), we perform a sensitivity analysis under the process 170

variation by performing the Monte-Carlo simulation using the 171

PV models from TSMC 65nm technology (see Section VIII). 172

5) To study the robustness of MacLeR (i.e., drop in HT 173

detection accuracy), we also perform a sensitivity analysis 174

under aging effects with and without different aging polices, 175

i.e., Fast-Core-Age-First and balanced-aging profile (see 176

Section VIII-C). 177

6) To illustrate the scalability and generalizability of the 178

MacLeR, we evaluated MacLeR for SoC with un-trusted 179

microprocessor IPs and non-processor SoC (see Section IX). 180
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Hardware Design: To evaluate our MacLeR framework181

with the above methods, we developed a LEON3-based SoC182

consisting of four LEON3 processor IPs integrated with one183

vga lcd IP, one RS232 IP, one Ethernet IP, four memory184

controller IPs, one basic-RSA and one AES IP for multiple185

instructions using different ML-algorithms (see Section VII).186

Key Results Compared to the state-of-the-art ML-based187

HT detection Technique: We analyzed our MacLeR on the188

above-mentioned SoC for multiple trust-Hub HT benchmarks and189

compared it with the state-of-the-art technique presented in [9].190

Key results of these experiments are:191

1) With only a single port power measuring block, our MacLeR,192

using an MLP with two hidden layers and eight neurons193

per layer, achieves HT detection accuracy of 96.256% that194

is ≈10% more than the maximum accuracy achieved by the195

technique presented in [9].196

2) The area and power overheads of MacLeR are ≈7x less than197

the area and power overheads of the technique presented198

in [9]. MacLeR requires ≈ 7.01µm2 (≈ 0.15% of the area199

of the implemented SoC) and ≈ 15µW (< 1% of the power200

of the implemented SoC), respectively, when synthesized for201

65nm technology using the Cadence Genus tool.202

Sensitivity to the Process Variations and Aging: The203

side-channel parameters-based (like power consumption) HT204

detection techniques are vulnerable to process variations (PV)205

and aging. Therefore, we also analyze the impact of PV on206

the MacLeR by performing Monte-Carlo simulation using given207

PV models from TSMC 65nm technology. The aging variations208

based on the model presented in literature [23]–[25], i.e.,209

change in operating frequency after Year-1, Year-2, Year-5 and210

Year-10. We evaluated MacLeR with no aging mitigation and for211

two aging policies, i.e., Fast-Core-Age-First and balanced-aging212

profile. Key results of this sensitivity analysis are:213

1) In the microprocessor, the power variations due to HT214

are significantly higher compared to the PV-induced power215

variations or powaer variation due to aging effects.216

2) The average drop in the HT detection accuracy of MacLeR is217

less than 1% and 9% when considering only PV and PV with218

worst-case aging, respectively, which is ≈10x less than in the219

case of the state-of-the-art ML-based HT detection technique.220

II. RELATED WORK221

Typically, HT detection techniques employ delay [6]–[8],222

power consumption [9], [10], [13] and operating223

frequency [26][27] signature-based analysis. However, most of224

these techniques are payload-specific, i.e., they can only detect225

HTs during the design or testing phases, and require golden226

circuits. However, the intruder may hide HTs by exploiting the227

aging behavior [4][5] or the switching activity [3] of the chip.228

Detecting such HTs during the testing phase is very challenging,229

and the undetected HTs may get activated once the chip is in230

use. Run-time approaches, on the other hand, can monitor an231

IC for its entire operational lifetime, providing an important232

last-line of defense. Therefore, specialized techniques have been233

developed to detect HTs with specific payload at runtime, i.e.,234

confidentiality [28], integrity [29] and availability [30] attacks.235

The main drawback of such run-time techniques is that they236

incur large area and power overhead [31] and require precise237

calibration to cater to environmental changes and process238

variations.239

To address the above-mentioned limitations, ML-based240

techniques have emerged as a promising solution to detect241

the possibility of anomalies at run time, while exploiting the242

TABLE I: Comparison with state-of-the-art ML-based run-time HT detection
(SVM: support Vector Machine, RE: Reverse Engineering, TMR: Triple Modular
Redundancy, DT: Decision Tree,“n”: Number of components involve in a pipeline
operation, C: Confidentiality, I: Integrity, A: Availability, P: Power, D: Delay)

Techniques Payloads Parameters ML
Tools

On-Chip OverheadC I A P D
[32], [33] X X X SVM SVM and RE overhead

[19] X X X SVM SVM Model and TMR
[9], [22] X X X DT “n” Power-ports and ADCs

MacLeR X X X X MLP One power-port, “n” current
sensors, and Time Multiplexer

datasets obtained during the measurement phase for training [17]. 243

One of the major challenges in such techniques is generating 244

the parametric or behavioral profile to train the ML tool. 245

Recently, a support vector machine (SVM) has been used to 246

classify the intruded and un-intruded parametric behavior [18]. 247

However, modeling and acquiring the dynamic behavior of SoC 248

using SVM is computationally costly, e.g., it requires m × p 249

multiplications and requires p × wordsize, where m and p 250

are the size of data and number of features, respectively. To 251

cater to this problem, Kulkarni et al. [19] proposed to use 252

other supervised ML online algorithms, i.e., k-NN and Modified 253

Balanced Winnow (MBW) algorithm. However, these approaches 254

assume that IP modules are not intruded and therefore, they 255

are only applicable to availability attacks. The work in [9] 256

proposed an on-chip power-based technique, which can detect 257

HTs having direct or indirect effects on the power consumption 258

of a microcontroller [9]. However, this HT detection technique 259

requires a large number of power-ports to extract the power 260

behavior for ML training and ML inference, and is therefore 261

infeasible to be deployed in real-world embedded systems. Table 262

I summarizes state-of-the-art ML-based HT detection approaches 263

w.r.t. their features, as well as the orientation of our proposed 264

MacLeR framework highlighting the key differences. 265

III. THREAT MODEL 266

We assume that the third-party IP (3PIP) vendors are not 267

trustworthy, and therefore, the specification and source code 268

provided by the vendor may contain HTs; see Fig. 3.
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Fig. 3: Brief overview of the IC manufacturing along with the targeted threat
model and the corresponding payloads.

269

The hardware designers/architects who integrate different 270

3PIPs, along with the in-house IPs (if any), to develop an SoC 271

are considered to be the defenders. Note that among these IPs 272

at least one IP is trusted. This paper targets HTs (see Fig. 3), 273

which have a direct or indirect impact on the shared power 274

network between IPs of a SoC. Although the multi-core SoCs 275

can have multiple power grids and different voltage islands, 276

the SoCs in battery-operated components for edge devices 277

typically have only one power grid with multiple voltage islands 278

(for instance, GAP-8 [20]), which is shared between different 279

components. Therefore, in this work, we design a low-power 280

machine-learning-based run-time HT detection methodology for 281

SoCs that have one power grid with multiple voltage islands. 282
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IV. MACLER: ML-BASED RUN-TIME MONITORING283

Fig. 4 shows the complete step-by-step flow of McLeR, which284

consists of the following key steps:285

1) The main goal of MacLeR is to design a low-power ML-based286

monitor for HT detection, for which a proper training287

dataset is required. Towards this, during the design phase,288

first, MacLeR generates power profiles by measuring the289

combined power consumption of each component involved in290

a particular pipeline stage. However, to generate the abnormal291

power profiles of a microprocessor for MLP training, we use292

the Trust-Hub HT benchmarks. Note, we use different sets of293

HT benchmarks for training and testing of MacLeR to avoid294

any kind of training bias.295

2) During the design phase, it uses the generated power profiles296

to train different variants of MLPs. Then it performs a design297

space exploration (DSE) w.r.t. the detection accuracy and the298

associated overhead of the MLP, and it chooses the most299

appropriate MLP, which is used for run-time HT detection.300

3) During the run time, MacLeR measures the power301

consumption of each component involved in a particular302

pipeline stage using multiple current mirrors2, and then it303

collects the combined power using a single pMOS transistor.304

Then these power values are collected in a time-division305

multiplexing manner and used by the trained MLP (which306

is the best-one from the Step-2 of DSE) to detect HTs.307

Trust-hub HT 

Benchmarks PS1

“s” Stage Pipeline microprocessor

𝐶𝐴𝐵1 𝐶𝐴𝐵2

ML Training
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Design 
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Set of ML 

Algorithms

Overhead and HT detection Accuracy Analysis

Set of 

instructions
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𝐶𝐴𝐵3

PS3

𝐶𝐴𝐵𝑠

PSs

Fig. 4: MacLeR: ML-based methodology to run-time power monitoring. CABs
represent the current acquisition blocks for sth pipeline stages (PSs).

V. FINE-GRAINED POWER PROFILING308

During design time, fine-grained power profiles are309

obtained by measuring the instruction-dependent power of310

each component associated with a pipeline stage. However,311

power acquisition during the run-time poses a research challenge312

about how to acquire the fine-grained power profiles with a313

minimum area overhead?314

For this, we propose to use multiple current mirrors for315

measuring the current from each component and collect it using316

a single pMOS transistor-based collector, as shown in Fig 5.317

Since the current measuring accuracy is dependent on the sizes318

of the transistors, therefore, we computed these sizes using the319

following set of equations:320

W ′nscs
= SFnscs ×Wnscs (1)

321

SFnscs =
Inscs

max(Ins1, Ins2, ..., Inscs )
(2)

Where Wnscs and W ′
nscs are the widths of nMOS in the parent322

branch and corresponding mirror branches for csth component323

of the sth pipeline stage, respectively. In some cases, the width324

requirement exceeds the maximum allowed width. to address325

2Current mirror is an analog circuit that copies the current of an active device
using diode connected CMOS transistor. Typically, these circuits are used to sense
the current of an active device.
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Fig. 5: The proposed single power-port current acquisition block (CAB).
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this, we introduce the scaling factor SFnscs that normalizes 326

the current and respective transistor width, to keep the width 327

requirement within the limit, as shown in Equation 2. Similarly, 328

using the model of [34], we computed the width of a single 329

pMOS for a given component ’C’, using the following equation: 330

Wps =
TwR ×Wn min

c
; define TwR =

µn

µp
(3)

The single current sensor-based power-ports are used to 331

measure the current of different modules involved in each 332

pipeline stage. Typically, the number of power-ports required to 333

cover all the modules is equal to the number of components 334

involved in the operations of pipeline stages [9][22], e.g., in 335

n-stage pipeline architecture, the number of power-ports is Np = 336

C1 + C2 + ... + Cn, where C1, C2, ..., Cn are the number of 337

components involved in pipeline operations of 1st, 2nd, ... , 338

nth pipeline stage, respectively. Having multiple power ports 339

in an IC is very expansive for the IC packaging. Therefore, 340

to acquire the complete power profile of the microprocessor 341

via a single power-port, we propose to acquire the data using 342

time multiplexing (which measures the current of each SP-CAB 343

after every clock cycle), as shown in Fig. 6. Note, MacLeR 344

extracts and uses the fine-grained power profiles of a trusted 345

microprocessor in an SoC. Therefore, it does not require any 346

golden circuits of un-trusted IPs. 347

VI. TRAINING AND SELECTION OF AN EFFICIENT MLP 348

MODEL 349

After acquiring the power profiles of the microprocessor, 350

MacLeR chooses an appropriate ML algorithm based on the 351

required HT detection accuracy and design constraints. Towards 352

this end, we propose an iterative methodology that first trains 353

the multiple configurations of MLPs using the following steps, 354

as shown in Fig. 4. 355

1) We start by labeling different power-profiles to differentiate 356

the intruded and un-intruded power profiles. These labelings 357

are, in turn, used to train and validate the ML models. 358

Note, during the design time, the abnormal power profiles 359

are obtained using the trust-hub HT benchmarks. 360
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Fig. 7: Hardware implementation of the MacLeR monitoring framework for LEON3 with a seven-stage pipeline architecture.

2) Next, we categorize these power profiles w.r.t. the functional361

and behavioral similarity to increase the efficiency of the ML362

models.363

3) After the categorization, we train the multiple ML models and364

validate them by applying the testing dataset.365

4) Finally, MacLeR selects the best MLP model based on the366

maximum HT detection rate, associated overhead, and the367

given design constraints.368

Note, MacLeR requires the instruction, its category, and power369

value, irrespective of the pipeline stage, as shown in Fig. 7. The370

main reason to choose the fine-grained power profiling at the371

pipeline stage is that MacLeR can explore multiple power values372

to expand its search space.373

VII. CASE STUDY: EMPLOYING MACLER TO A374

LEON3-BASED SOC375

We illustrate the practicality, utilization, and effectiveness of376

our MacLer framework by applying it on a LEON3-based SoC,377

where at least one of the IP is trusted, as shown in Fig. 7.378

The main motivation of choosing LEON3 is that it is highly379

configurable and open-source, and the HT benchmarks that are380

provided by trusthub.org [21] can easily be integrated into it. The381

workloads used for LEON3 are 64-bit encrypted multiplication,382

subtraction, addition, and division. The inputs are encrypted383

using AES and results are displayed on the screen using VGA384

and also transmitted using Ethernet and RS232 IPs. Note, the385

addition, subtraction, and multiplication are used for training the386

ML monitor, and the division is used at the inference stage of387

the ML-monitor to detect the HTs, and therefore, avoiding the388

biasing in the testing phase.389

A. LEON3: Power Profiling390

For obtaining the power profile, we synthesized the LEON3391

processor using Cadence Genus (Encounter) tool with the TSMC392

65nm library. The power of each module involved in the pipeline393

stage is calculated separately for each instruction. For example,394

Fig. 8 shows the power consumption in each pipeline stage for395

a particular instruction, which is extracted by executing one396

instruction at a time. It is very challenging and computationally397

expansive to cover all the possible combinations of instructions.398

Therefore, to reduce the overheads, we use the instruction399

categorization of SPARC V8 architecture [35], i.e., the following400

five categories:401

1) Category 1 (Cat1): Load/store instructions access memory402

and, use registers and a signed 13-bit immediate value to403

calculate a 32-bit, byte-aligned memory address, e.g., load404

(LD), load double (LDD) and load floating-point (LDF).405

2) Category 2 (Cat2): Arithmetic/logical/shift instructions406

perform arithmetic, logical, and shift operations, e.g., subtract407

(SUB), add (ADD), multiply (ULMUL) and add with carry408

(ADCC).409

3) Category 3 (Cat3): Control-transfer instructions perform410

PC-relative branches and calls, register-indirect jumps, and411

0

50

100

150

200

250

LD ADD UMUL SAVE RESTORE WRY WRPSR FMOVS

P
o

w
er

 (
m

W
)

Fetch Decode Register Access Execute Memory Exception Write

Fig. 8: Power Profiles of un-intruded LEON3 for different instructions
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Fig. 9: Hardware Implementation of the single power-port current acquisition
block for pipeline stage Fetch of the LEON3 processor.

conditional traps, e.g., restore (RESTORE), call and link 412

(CALL) and save (SAVE). 413

4) Category 4 (Cat4): Read/Write Register instructions read 414

and write the contents of software visible state registers 415

and processor registers, e.g., write to processor state register 416

(WRPSR), write to y register (WRY) and read from y register 417

(RDY). 418

5) Category 5 (Cat5): Floating-point operate instructions 419

perform all floating-point operations, e.g., floating-point move 420

(FMOV), floating-point operate (FCMP) and floating-point 421

add (FADD). 422

Note, we assume all the required data is available in the 423

on-chip memory, and thus, the difference in power profiles during 424

cache hits or misses is not considered in this work. However, 425

this behavior can be captured by exploiting the pipeline stall 426

flags [36]. 427

B. LEON3: Data Acquisition 428

The power consumption of a microprocessor is dependent 429

upon the number of modules involved in the execution of 430

instructions during a particular pipeline stage, e.g., LEON3 431

has seven different power profiles, i.e., one for each pipeline 432

stage. To model the power behavior, first, we identify all the 433

modules involved in the operation of a particular pipeline stage. 434

Fig. 7 shows that in LEON3, the fetch stage requires instruction 435

cache (I-Cache), AHB bus, adder, and multiplexers (MUX). 436

Decode, register access, execute, memory and exception stages 437

require register file, ALU, data cache (D-cache), and interrupt 438

controller. In LEON3, the fetch stage consists of 4 components, 439

which is the maximum number of components involved as 440

compared to any other pipeline stage. To obtain the power 441

profiles, we implemented the CAB for each pipeline stage of 442

the LEON3, e.g., Fig. 9 shows the CAB for Fetch stage. To 443
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generate the anomalous power profiles, we implemented the444

trust-hub HT benchmarks. In our experimental setup, AES-T100,445

AES-T800, vgalcd-T100, RS232-T1000, memctrl-T100, and446

ethernetMAC10GE-T700 benchmarks are used to generate the447

data for training, while the data generated using all the HT Trojan448

benchmarks for RS232, MC8051, AES, Basic RSA, VGA-LCD,449

memory controller and Ethernet IPs are used for evaluation.450

Fig. 10 shows the power profiles of LEON3 in the presence451

of AES-T100 in SoC, and the red dots (l) show the triggering452

of AES-T100. The power value at each time unit, along with an453

instruction and its category, is extracted to generate the required454

power profile3. These profiles are then used to train the ML model455

in the next phase.456

C. LEON3: Run-time Monitor for HT Detection457

After extracting the power profile in the previous phase458

(see Fig.10), we analyze and transform it in such a way that459

it can be utilized for training and validation. This involves460

proper labeling of the extracted power behavior to differentiate461

between intruded and un-intruded behaviors, and pre-processing462

to reduce the redundant dataset. After the transformation, we463

3For example, at 1ns the power profile consists of the power of each
pipeline stage is ([0.086649W, 0.027123W, 0.027238W, 0.013182W, 0.015111W,
0.012424W, 0.059794W], LD and Cat1).

trained different configurations of neural networks (multi-layer 464

perceptrons (MLP) with one and two hidden layers, as shown 465

in Fig. 11). Afterwards, we analyzed the trade-off between 466

accuracy and computational cost as shown in Fig. 11. For a 467

comprehensive analysis, we trained each configuration on the 468

abnormal power profiles extracted from the different scenarios 469

(explained in Fig. 1). For example, MLP (1,8) is trained for 470

anomalous data (generated from the scenarios S1, S2, S3, S4, S5, 471

S6, and S7 individually, and a combination of all scenarios) and 472

the normal data (generated from the scenario S0). This analysis 473

shows that the MLP with two hidden layers and eight neurons 474

in each hidden layer provides maximum HT detection accuracy, 475

i.e., 96.256% in our case study. 476

HT Detection Accuracy: To validate the extracted trained 477

model, we randomly divide the labeled data into k-mutually 478

exclusive subsets, where each subset is approximately of the same 479

size, and performs the training and validation k times. In each 480

iteration, one subset is used for validation, and the others are 481

used in training. Thus, each subset is used for an equal number 482

of times for training and once for validation. We also evaluated 483

the trained network for unseen data generated using trust-hub HT 484

benchmarks, as shown in Fig. 12. 485

The experimental analysis shows that in the case HT 486

benchmarks for MC8051, the trained MLP with two hidden 487

layers and eight neurons in one layer provides approximately 488

98% HT detection accuracy, and with a very small number 489

of false positives and false negatives. However, for other HT 490

benchmarks, MacLeR still provides approximately 90% HT 491

detection accuracy. Based on these observations, we conclude 492

that the impact of HTs on shared power network, especially in 493

multi-IP based SoC with at least one trusted microprocessor, can 494

be detected by observing the fine-grained power profiles of the 495

trusted processor. 496

Moreover, for comprehensive analysis, we also compute 497

the Mathews correlation coefficient, as shown in Fig. 12(d). 498

MLP1(10, 100) and MLP2(50,100) using [9] gives up to 88% HT 499

detection accuracy. However, the MCC analysis shows that MLPs 500

trained using [9] are either randomly flipping the binary decision 501

(because MCC is close to zero, see labels P10 and P11) or show 502

the negative correlation. The reason for this is that number of 503

false positives, and the number of false negatives is very large. 504

Therefore, these MLPs cannot be considered as a good binary 505

classifier. On the other hand, MCC values for an MLP trained 506

using MacLeR go up 0.7 (see label P12), which is the property 507

of a very good binary classifier. 508

VIII. SENSITIVITY ANALYSIS OF MACLER UNDER PROCESS 509

VARIATIONS 510

The side-channel parameters (like Power) based-HT detection 511

techniques are vulnerable to environmental changes (e.g., 512

temperature variations and measurement noise) and process 513

variations (PV). To illustrate the variation-tolerance of MacLeR, 514

we perform an analysis that consists of the following steps: 515

1) First, we perform the Monte-Carlo analysis using the given 516

PV model from TSMC 65nm technology to generate power 517

profiles with and without HT activation while using multiple 518

workloads, i.e., the addition, subtraction, and multiplication. 519

In this experiment, we perform 100 experiments for each 520

workload with and without each benchmark Trojan. 521

2) Afterwards, we use these power profiles to train the MLP 522

that is selected in Section VII-C based on the highest HT 523

detection accuracy (see Fig.11). Then, the trained MLP is used 524

to analyze the impact of PV on the HT detection accuracy. 525
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(d) Matthews Correlation Coefficient (MCC)
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0.186 drop

Fig. 12: False positives, false negatives and HT detection accuracy of the MacLeR and the state-of-the-art run-time ML-based HT detection technique [9], in the
presence of different HT benchmarks with and without considering the process variations. Note: these analyses are based on the 100,000 classification per HT, where
the total number of activations is 1000 out of 100,000. In these experiments, all benchmarks related to MC8051 are implemented in the LEON3 microprocessor and all
other HT benchmarks are also configured for the LEON3 microprocessor. In these experiments, the overall accuracy is computed as Accuracy = TP+TN

TP+TN+FP+FN
,

where TP, TN, FP, and FN represent true-positives, true-negatives, false-positives, and false-negatives, respectively. The Mathews Coefficient is computed using the
standard formula, MCC =

(TP×TN)−(FP×FN)√
(TP+FP )×(TP+FN)×(TN+FP )×(TN+FN)

.

Note, we use the division as the workload for analyzing the526

HT detection accuracy of the trained MLP.527

A. Impact of PV on Fine-Grained Power Profiles528

The impact of process variations is not uniformly distributed529

for an SoC. Depending upon the fabrication conditions530

and variation in the fabrication process, it affects different 531

components with different intensities. Therefore, to analyze 532

the impact of process variation on fine-grained power profiles, 533

we individually analyze the power profiles extracted from 534

the CAB associated with each pipeline stage of the LEON3 535

microprocessor. For example, Figs. 13 show the impact of PV 536
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(a) Power behavior of the “Fetch” pipeline stage of the LEON3 extracted from CAB1
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(b) Power behavior of the “Decode” pipeline stage of the LEON3 extracted from CAB2
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(c) Power behavior of the “Register Access” pipeline stage of the LEON3 extracted from CAB3
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(d) Power behavior of the “Execute” pipeline stage of the LEON3 extracted from CAB4
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On the left side: maximum and minimum 

values of power consumptions

In the middle: dynamic power consumption for 1000 ns 

for the best-case scenario and worst-case scenario

On the right side: dynamic power 

consumption for 1000 ns
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Fig. 13: The impact of process variations and implemented hardware Trojan benchmark, i.e., MC8051-T600, on the power behavior of Fetch, Decode, Register
Access, and Execute pipeline stages of LEON3 microprocessors while executing the multiple instructions. The results presented in black, blue and red colors represent
the nominal power behavior, variations in power behavior due to PV, and variations in the power behavior due to HT, respectively. Note, in these analyses, Best-Case
(BC) defines the scenarios in which HT is easily detectable, and Worst-Case (WC) defines the scenarios in which HT is hard to detect.

on fine-grained power profiles of LEON3 microprocessor with537

and without HT benchmark, i.e., MC8051-T6004. From these538

4For these analyses, we performed 100 experiments for each case with multiple
HT benchmarks. However, due to limited space, we present analysis for 20
experiments for each case with one HT benchmark, i.e., MC8051-T600.

analyses, we made the following observations: 539

1) The analysis presented in Fig. 13 (a) shows that in 540

the presence of an active HT (i.e., MC8051-T600) the 541

maximum power consumption of the “Fetch” pipeline stage 542
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(a) Power behavior of the “Memory” pipeline stage of the LEON3 extracted from CAB5
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(c) Power behavior of the “Write” pipeline stage of the LEON3 extracted from CAB7
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Fig. 14: The impact of process variations and implemented hardware Trojan benchmark, i.e., MC8051-T600, on the power behavior of Memory, Exception, and
Write pipeline stages of LEON3 microprocessors while executing the multiple instructions. The results presented in black, blue and red colors represent the nominal
power behavior, variations in power behavior due to PV, and variations in the power behavior due to HT, respectively. Note, in these analyses, Best-Case (BC)
defines the scenarios in which HT is easily detectable, and Worst-Case (WC) defines the scenarios in which HT is hard to detect.
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The impact of process variations on

the HT detection accuracy in

MacLeR is negligible, i.e., <1%.

Fig. 15: Impact of different range of the process variations on the average
detection accuracy. Note, this analysis is performed for the MC8051-T600.

is significantly larger than the PV boundaries5. For example,543

the best-case (Experiment 9) analysis shows that the spread544

of power consumption in the case of MC8051-T600 is545

smaller (see label V1) but is shifted towards the higher546

power consumption (see Label A1). This behavior shows the547

additive nature of MC8051-T600. However, in some cases, the548

5It is defined as the absolute difference between the maximum (Pmax) and
minimum (Pmin) values of power consumption in the presence of PV, |BPV | =
|Pmax| − |Pmin|.

variations are not significant. For example, in the worst-case 549

(Experiment 16) analysis, the variations in power are smaller, 550

and the mean value of power consumption in the presence of 551

MC8051-T600 is within the PV boundaries (see label A2). 552

2) Fig. 13 (b) shows a similar trend for the “Decode” pipeline 553

stage. However, variations in power consumption due to 554

MC8051-T600 are even larger than the variations in power 555

consumption of the “Fetch” pipeline. For example, in the 556

best-case (Experiment 9) analysis, the power spread is large 557

(see label V3), and it completely lies outside the PV 558

boundaries. 559

3) Similar trends are observed for the other pipeline stages of 560

the LEON3 microprocessor, i.e., “Register Access” in Fig. 13 561

(c)”, “Execute” in Fig. 13 (d), “Memory” in Fig. 14 (a) 562

and “Write” in Fig. 14 (c). However, the power behavior 563

of the pipeline stage “Exception” is hardly affected by 564

MC8051-T600. For example, the best-case analysis (see labels 565

A11 and V11) and the worst-case analysis (see labels A12 and 566
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benchmarks
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C: AES-T300; F: Basic-RSA-T300

Fig. 16: Performance analysis of MacLeR for different HT benchmark under different PV and aging variations, i.e., change in operating frequency after Year-1,
Year-2, Year-5, and Year-10.

V12) in Fig. 14 (b) shows that in most of the experiments,567

power variations due to MC8051-T600 are within the PV568

boundaries. The reason behind this is that MC8051-T600569

does not get triggered when the instructions are inside the570

exception pipeline stage. Moreover, in most of the workloads,571

this pipeline stage remains dormant.572

In summary, on average, the HT detection accuracy drops in573

MLP1(10, 100) and MLP2(50,100) using [9] are ≈ 29% (83.75%574

to 55.002%) and ≈ 11% (88.56% to 77.401%), respectively.575

However, on average, the HT detection accuracy drop in MacLeR576

(subjected to PV) is less than 1% (96.256% to 95.85%) compared577

to the case without PV consideration.578

Based on the above-mentioned analyses, we conclude that579

in most cases, variations in fine-grained power profiles of the580

microprocessor due to HT are significant enough to detect the581

HT, hence captured by our MacLeR. Moreover, depending upon582

the applications, the frequency and significance of the pipeline583

stage can be adjusted to increase the HT detection accuracy.584

B. Impact of PV on HT Detection Accuracy585

To analyze the tolerance of MacLeR against PV, we generated586

the power profiles for different ranges of process variations, i.e,587

1% to 10%, and analyze the MLP trained using MacLeR, as588

shown in Fig. 15. This analysis shows that the drop in HT589

detection accuracy of MLP trained using MacLeR is negligible.590

However, the drop in HT detection accuracy of MLPs that are591

trained using the power profiling technique in [9] is significant.592

The reason behind this is that the stat-of-the-art technique [9]593

does not consider the correlation between the instructions with594

power profiles of microprocessor w.r.t. different pipelines stages.595

To further illustrate the effectiveness of the MacLeR, we596

analyze the MLP that is trained using MacLeR for various597

HT benchmarks from trust-Hub [21] in the presence of 10%598

PV. Fig. 12 shows the impact of 10% PV on the number of599

false positives, false negatives, and the HT detection accuracy600

of the trained MLP. From this analysis, we made the following601

observations:602

1) For MLPs that are trained using the power profiling technique603

in [9], in the worst case, the number of false positives is604

increased by 5x (see label P1 in Fig. 12 (a)) and 2x (see605

label P2 in Fig. 12 (a)). However, on average, the number606

of false positives is increased from 500 (without considering607

the PV) to 1500 (when considering the PV). On the other608

hand, the increment in false positives for MacLeR is almost609

negligible, i.e., 1.06x, see label P3 in Fig. 12 (a). A similar610

trend can be observed for increment in the number of false611

negatives, i.e., 5x increment as shown by label P4 in Fig. 12612

(b), 2x increment as shown by label P5 in Fig. 12 (b), and613

1.15x increment as shown by label P6 in Fig. 12 (b).614

2) Similar to the analysis, presented in Fig. 15, in the worst615

case, the HT detection accuracy MLPs that are trained using616
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Fig. 17: SoCs to evaluate the scalability and generalizability of MacLeR. SoC-A
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un-trusted Ethernet IP, one un-trusted RS232 and one trusted AES IP. SoC-B
consists of one trusted AES IP and one un-trusted Ethernet IP. SoC-B takes the
input, encrypts the input and transmits it via Ethernet.

the power profiling technique in [9] is 32% (see label P7 in 617

Fig. 12 (c)) and 14% (see label P8 in Fig. 12 (c)), respectively. 618

On the other hand, the worst-case drop in the HT detection 619

accuracy for MacLeR is negligible, i.e., 0.6% as shown by 620

label P9 in Fig. 12 (c). In short, on average, the drop in HT 621

detection accuracy is also negligible. 622

C. Sensitivity Analysis of MacLeR under Aging Effects 623

For the comprehensive analysis, we evaluated MacLeR for 624

different HT benchmark under different PV and aging variations 625

based on the model presented in literature [23]–[25], i.e., 626

change in operating frequency after Year-1, Year-2, Year-5, and 627

Year-10. Moreover, we also evaluated MacLeR with no aging 628

mitigation and for two aging policies, i.e., Fast-Core-Age-First 629

and balanced-aging profile. 630

1) Fig 16 shows that in the case of no aging mitigation technique, 631

HT detection accuracy drop of MLP trained using MacLeR 632

subjected to PV is 0.44% and subjected to aging after Year-10 633

is 8.936% when compared to the case without any variations. 634

However, the decreasing rate of MCC values due to aging 635

is steeper than HT detection accuracy, which shows that the 636

number of false positives and false negatives increase with 637

aging. 638

2) Fig 16 shows that in the case of the aging mitigation 639

technique, the detection accuracy drop of MLP trained is 640

relatively smaller. Similarly, the decreasing rate of MCC 641

values is significantly lower than the worst-case aging 642

scenario. 643
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On-average, MacLeR detects HT with 94% accuracy for both SoCs. Similarly, the 

average value of Mathews correlation coefficient show that MaLeR is a good classifier. 

Fig. 18: Performance analysis McLeR for SoC-A and SoC-B in terms of false positives, false negatives and HT detection accuracy in different scenarios, i.e., without
PV and aging, PV without aging, PV with aging after Year-0, 1, 2, 5 and 10. Note, results for SoC-A are for the case when LEON3 is intruded with different MC8051
trust-Hub HT benchmarks, and results for SoC-B are for the case when Ethernet IP is intruded with different EthernetMC10GE trust-Hub HT benchmarks.

IX. SCALABILITY AND GENERALIZABILITY OF MACLER644

To evaluate the scalability and generalizability of MacLeR,645

we also evaluated MacLeR on SoC-A (with untrusted LEON3646

and trusted AES IP) and SoC-B (non-microprocessor SoC647

with trusted AES), see Fig, 17. Note, in both SoCs, the648

fine-grained power profiles of trusted AES IP are obtained649

by computing the power consumption of computation blocks650

for each round separately, as shown in Fig. 17. Experimental651

results in Fig. 18 show the effectiveness of MacLeR for IPw652

with and without trusted microprocessors. Even in the presence653

of non-microprocessor trusted IP, MacLeR effectively use the654

fine-grained power profiles of other non-microprocessor trusted655

IP, i.e., AES IP, to detect the HT with ≈95% accuracy.656

A. Different Workloads running on trusted LEON3 IP657

We also evaluated MacLeR, for different input vector to658

a division workload that is running on a trusted LEON3 IP659

in LEON3-based SoC. Note, we also considered the PV and660

different aging effects to evaluate MacLeR for the un-predicted661

real-world. Fig. 19 shows the HT detection accuracy when three662

different input vectors are used for the division workload. The663

experimental analysis shows that for all input vectors, MacLeR664

behaves very similar trends, high HT detection accuracy and665

shows very small variations with respect to input vectors. Hence,666

MacLeR can effectively detect HTs irrespective of input vectors.667
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B. Different Workloads running on other un-trusted LEON3 IPs 669

We also evaluated MacLeR for different workload 670

configurations, as shown in Fig. 20. In these experiments, 671

the workload in trusted LEON3 IP is fixed to division, and 672

the rest of the un-trusted LEON3 IPs can remain idle, can run 673

multiplication, addition or division, see the different workload 674

configurations in Fig. 20. These experimental results show that 675

variation in the workload across the chip have negligible impact 676

(i.e., 2% to 3% decrease) on the HT detection accuracy. 677

X. ON-CHIP AND OFF-CHIP OVERHEAD OF OUR NEW 678

HARDWARE COMPONENTS OF MACLER 679

To analyze the on-chip overhead of the proposed MacLeR 680

methodology, we synthesized the RTL of the complete 681

LEON3-based SoC using a 65nm technology in Cadence 682

Genus. On the other hand, the power consumption of off-chip 683

components is estimated based on commonly used SoCs, e.g., 684

TMS3280x SoC for ADC. However, the off-chip area overhead is 685

specific to a given platform. Therefore, in this paper, our primary 686

focus is overhead with respect to power consumption. Table II 687

provides the on-chip and off-chip area and power overhead for 688

LEON3-based SoC and SoC-A6. 689

On-chip area overhead: The overall on-chip area overhead 690

for SP-CAB, time multiplexing in LEON3-based SoC is 691

approximately 70.23µm2, and the on-chip area overhead of 692

SoC-A is approximately 103.26µm2. The reason behind the extra 693

overhead for the latter is that there are more SP-CABs in SoC-A 694

as compared to SP-CABs in LEON3-based IP. In summary, the 695

area overheads for LEON3-based SoC and SoC-A is less than 696

0.025% of the total area, thus negligible. This analysis also 697

shows that area overheads of the trusted IPs, i.e., LEON3 in 698

6Note, this same SoC but the trusted IP is AES instead of LEON3.
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TABLE II: On-chip and off-chip area and power overhead analysis

Area (µm2)
LEON3-based SoC SoC-A LEON3 IP AES IP

Without overhead 464851.302 464851.302 108330.348 20332.8
With on-chip overhead 464921.532 464954.562 108400.578 20436.06
With on-chip & off-chip overhead N/A N/A

Power (mW )
LEON3-based SoC SoC-A LEON3 IP AES IP

Without overhead 734.180657 734.180657 183.2784452 0.688
With on-chip overhead 734.6559309 734.755157 183.3972637 0.6915
With on-chip & off-chip overhead 770.9199309 764.444157 N/A N/A

LEON3-based SoC and AES in SoC-A, is also 0.06% in LEON3699

IP and 0.5% in AES, thus, negligible.700

On-chip and Off-chip power overhead: Similarly, the701

on-chip power overhead for LEON3-based SoC is ≈0.47 mW ,702

and the on-chip power overhead of SoC-A is 0.57 mW . which703

is less than 1% of the total power, thus negligible. In summary,704

the on-chip power overheads for LEON3-based SoC and SoC-A705

is less than 0.07% of the total area, thus negligible. However,706

the off-chip power overheads for LEON3-based SoC and SoC-A707

are 36.74 mW and 30.26 mW , respectively. The overall on-chip708

and off-chip power overhead is less than 5% of the total power709

consumption; thus, it can be considered as tolerable [37].710

Similarly, the power overheads of the trusted IPs, i.e., LEON3711

in LEON3-based SoC and AES in SoC-A, are also 0.06%712

in LEON3 IP and 0.5% in AES, respectively, thus negligible.713

Summarizing the key benefits:714

1) The area overhead of MacLeR is 7x less in terms of715

power ports as compared to state-of-the-art [9][32][33][12].716

Moreover, the best-selected MLP configuration for MacLeR717

consists of two hidden layers, and each layer has only eight718

neurons. On the other hand, the MLP in [9] with maximum719

HT detection accuracy (i.e., 85.12%) consists of 50 hidden720

layers, and each layer has 100 neurons.721

2) The overhead in terms of physical area is larger than the722

technique of [32][33]. However, this technique uses reverse723

engineering, which increases the complexity, time, effort,724

and cost substantially. Our technique, in contrast, uses a725

very simple design and a minimal area overhead, making726

it practical for fast deployment for the IoT edge and CPS727

devices.728

XI. CONCLUSION729

This paper presents a methodology to design an ML-based730

run-time HTs detection (MacLeR) for resource-constrained IoT731

edge devices. MacLeR first extracts the instruction-dependent732

fined-grained power profile of different pipeline stages.733

Afterwards, it addresses the challenging problem of run-time734

data acquisition by designing a single power-port based current735

acquisition block. The power profiles are used to train and736

explore the design space of multiple ML models, and to select737

the model providing the highest HT detection accuracy. To738

illustrate the scalability and generalizability of the MacLeR, we739

evaluated it on different SoCs with microprocessors as trusted740

IP, non-microprocessor trusted IP, and non-microprocessor741

SoCs. Our experimental results show that as compared to the742

state-of-the-art HT detection technique, MacLeR achieves a743

10% increase in HT detection accuracy (i.e., 96.256%), while744

incurring 7x reduction area and power overhead. We also745

analyzed the impact of process variations and aging variations746

on MacLeR. The analysis shows that With proper aging policies747

and PV consideration can effectively, MacLeR can handle the748

unpredictability of real-world applications. Hence, this simple749

design with negligible area/power overhead and high tolerance750

against process variation makes MacLeR feasible in real-world751

IoT-edge and CPS devices.752
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