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Abstract: Synthetic Biology is an interdisciplinary field that uses well-established engineering principles, ranging from electrical,
control and computer systems, for performing the analysis of the biological systems, such as biological circuits, pathways, con-
trollers and enzymes. Controllers play a pivotal role in regulating different modules and components of a biological system to
ensure its smooth functionality. Conventionally, the analysis of these biological systems, i.e., the genetic circuits and their associ-
ated controllers is performed using paper-and-pencil proofs and computer simulations methods. However, these methods cannot
ensures accurate results due to their inherent limitations such as proneness to human error, approximations of results, round-off
errors and the involvement of unverified algorithms in the core of the underlying tools, providing such analyses. We propose to use
higher-order-logic theorem proving as a complementary technique for analyzing linear biological systems and thus overcome the
above-mentioned issues. The proposed approach is primarily based on developing a mathematical model of the genetic circuits
and the bio-controllers used in synthetic biology based on higher-order logic and analyzing it using deductive reasoning in an
interactive theorem prover. The involvement of the logic, mathematics and the deductive reasoning in this method ensures the
accuracy of the analysis. The main idea is to, first, model the continuous dynamics of the genetic circuits and their associated
controllers using differential equations. These dynamics are generally obtained from the reaction-based models of these systems
and thus requires the notion of reaction kinetics. The next step is to obtain the systems’ transfer function from their corresponding
block diagram representations. Finally, the transfer function based analysis of these differential equation based models is per-
formed using the Laplace transform. The transfer function is further used for performing the stability analysis of these systems. To
illustrate the practical utilization of our proposed framework, we formally analyze the genetic circuits of activated and repressed
expressions and autoactivation of protein, and phase lag and lead controllers, which are widely used in cancer-cell identifiers and
multi-input receptors for precise disease detection.

1 Introduction

Currently, several engineering principles [1] are being commonly
applied to analyze biological systems [2], signaling pathways [3]
(molecules set interacting to control different tasks of a cell) and
biological circuits [4] (cell biological portion imitating the logical
functionality executed in electrical circuits) etc. For instance, control
systems laws [5] are used for performing the analysis of biologi-
cal systems, i.e., genetic circuits and bio-controllers. The merger of
such interdisciplinary arenas into synthetic biology [6, 7] permits
designing and investigating these systems in an effective way.

Controllers in synthetic biology, generally called as bio-
controllers [8], are considered as a major part of a biological system
and are used to regulate the functionality of different modules and
components of the underlying system. The feedback controllers
incorporate an extra feedback from the output to improve the sys-
tem’s robustness and reduce its sensitivity to noise. They are fre-
quently utilized in genetic circuits. Analyzing such systems needs
modeling their dynamics, demonstrating the interaction of their
different modules/components, using differential equations. These
differential equations are generally obtained from the reaction-based
models of these systems. This requires the notion of reaction kinetics
and is mainly based on complex-valued vectors and matrices. Then,
the transfer functions which provide the dynamics in the frequency
domain of these systems are extracted from their block diagram rep-
resentations [9], based on foundational control system principles.
Finally, the Laplace transform is utilized for performing the trans-
fer function based (the frequency domain) analysis of these systems
based on their dynamical (differential equation based) models.

Conventionally, the analysis of these biological systems, i.e., bio-
logical circuits, pathways, networks and controllers, is performed

using the paper-and-pencil proof [10] and computer based numeri-
cal [11] and symbolic [12] methods. However, the paper-and-pencil
proof methods based analysis is error prone due to the highly
involved human manipulation, especially when analyzing larger sys-
tems, and hence cannot guarantee an accurate analysis. Moreover,
this kind of manual manipulation does not ensure that every assump-
tion necessary for the mathematical analysis is explicitly identified
in the analysis. Thus, there is always a chance of missing some vital
assumptions in the final result of the analysis and a system design
based on such a result may not lead to the same results as predicted
in the analysis. In the same way, the computer-based numerical
and symbolic techniques involve various tools, such as, MATLAB,
Mathematica and Maple for analyzing the dynamics of these sys-
tems. The numerical methods based analysis includes approximation
of the continuous values of the variables due to the finite precision
of computer arithmetic and thus compromises the accuracy of the
analysis. Furthermore, due to the availability of the limited computa-
tional resources and computer memory, it involves a finite iterations
number to obtain the values of unknown continuous parameters and
presents more inaccuracies in the analysis. Also, the symbolic tools
have some unproven symbolic procedures in their core and conse-
quently cannot ascertain complete correctness and accuracy of the
analysis results.

For example, the simplification of the mathematical expression
x2−1
x−1 in a symbolic tool Mathematica yields (x+ 1) without explic-

itly highlighting the case when x = 1, which returns an indetermi-
nate form [13]. Therefore, the concerned safety-critical nature of
biological systems such that these traditional approaches cannot be
trusted for their accurate analysis.
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Formal methods [14] are computer-based mathematical methods
that are being extensively used for the accurate modeling, specifica-
tion and verification of many complex real-world systems [15–17].
They are classified into two categories, i.e., model checking [18]
and higher-order-logic theorem proving [19]. Model checking is
based on constructing a state-space model of the underlying system
and verifying its intended temporal behavior by rigorous state-space
exploration. It has been widely used in the synthetic biology field for
formally investigating the biological circuits and their related feed-
back controllers. Yordanov et al. [20] proposed a novel approach for
formally verifying the synthetic genetic circuits. The authors devel-
oped a state-space model of the overall system by constructing the
individual components based on the experimentally obtained charac-
terization data and used it for formally analyzing a genetic inverter
and a genetic NOR gate. Similarly, Bartocci et al. [21] provided an
approach for designing the synthetic biological circuits by specify-
ing their behavior in terms of signal temporal logic (STL). Moreover,
the authors utilized their proposed framework for synthesizing a half
adder. Madsen et al. [22] used statistical model checking for formally
analyzing genetic circuits. In particular, they proposed a framework,
which converts a genetic circuit model into its stochastic model, i.e.,
continuous-time Markov chain, which is further used to conduct the
transient Markov chain analysis of these circuits. Finally, they uti-
lized their proposed framework to formally analyze a genetic toggle
switch. All the model checking based analyses, presented above, suf-
fer from the inherent state-space explosion problem [23] and hence
are not appropriate for analyzing larger systems.

Higher-order-logic theorem proving includes developing a math-
ematical model of the system based on higher-order logic and
verifying the interested properties using deductive reasoning inside
the sound core of a theorem prover. The involvement of a formal
model (specified in highly expressive higher-order logic) and its
related formally specified properties, along with the correct nature
of theorem proving, confirms the soundness and completeness of
the analysis. It has also been used to formal reason about the bio-
logical systems and molecular pathways. The authors in [24, 25]
offered a formalization of Zsyntax using HOL theorem prover. Also,
they used their proposed platform to formally reason and analyze the
TP53 degradation pathway and Glycolytic leading from D-Glucose
to Fructose-1,6-bisphosphate. Recently, Abed et al. [26] performed
the Laplace transform based analysis of the genetic circuits, i.e., the
activated and the repressed expressions of protein using the HOL
Light theorem prover. However, their proposed approach does not
cater for the reaction kinetic based dynamical models of the biologi-
cal circuits and bio-controllers. Similarly, Rashid et al. [15] proposed
a platform using HOL Light, which offers the formal support for
the reaction kinetic based dynamical analysis of the biological sys-
tems. However, their proposed platform considers the reaction-based
models of the real-valued species (reactant and products).

In this work, the higher-order-logic theorem proving [19] will be
used to formally reason about the genetic circuits and bio-controllers
used in synthetic biology, incorporating their reaction kinetic based
dynamical models for the complex-valued species (reactants and
products) as shown in Figure 1. The first step is to model the contin-
uous dynamics of the genetic circuits and their associated controllers
using differential equations. These continuous dynamics are gen-
erally obtained from reaction-based model of these systems. This
requires the notion of the reaction kinetics and a transformation of
the reaction-based model to its corresponding differential equation
model. The transfer function of these systems that can be obtained
from their corresponding block diagram representations is needed in
the next step. Finally, the Laplace transform is utilized for perform-
ing the transfer function based analysis of the differential equation
based models of these circuits, which is further used for the stabil-
ity analysis of these systems. To demonstrate the practical efficiency
and usefulness of our proposed framework, we formally analyze the
genetic circuits of activated and repressed expressions and autoacti-
vation of protein, and phase lag and lead controllers using the HOL
Light theorem prover.

The main contributions of the paper are:

•Formalization of the reaction kinetics involving formal models of the
biological pathways and reactions for the complex-valued biological
entities (reactants and products)
•Formalization of the complex-valued matrices that are required for

the formalization of the reaction kinetics
•Formalization of the transformation from a biological reaction to

the continuous dynamics (differential equations based models) of
systems
•Formalization of the stability of the biological circuits and con-

trollers using the HOL Light theorem prover
•Formal verification of the genetic circuits of activated and repressed

expressions and autoactivation of protein, and phase lag and lead
controllers using HOL Light

2 Preliminaries

We provide a brief introduction to the HOL Light theorem prover,
its theories of multivariate calculus and the Laplace transform and
the reaction kinetic based modeling of the biological systems in this
section.

2.1 Theorem Proving and HOL Light Theorem Prover

Theorem proving is a broadly adopted formal verification tech-
nique that includes building the proofs of the mathematical theorems
using a computer based program (called theorem prover) [27].
Theorem proving systems have been usually applied to formally
reason and analyze the properties of both hardware and software sys-
tems [16, 17]. Based on the expressiveness needing, these properties
are expressed as theorems using propositional, first-order or higher-
order logic, i.e. the higher-order logic offers more expressiveness by
permitting extra quantifiers. Furthermore, it is appropriate for con-
ducting the mathematical analysis based on theories of multivariate
calculus and the Laplace transform.

HOL Light [28], which is a widely used interactive theorem
prover, is utilized for developing and building formal proofs of
mathematical concepts represented as theorems. It is implemented
in Objective CAML (OCaml), a functional programming language,
with the purpose of automating the mathematical proofs [29]. It has
a very small logical kernel containing the OCaml code of approxi-
mately 400 lines and supports terms, types, axioms, inference rules
and theorems, which can be verified using the built-in axioms,
inference rules or already existing theorems.

2.2 Multivariable Calculus and Laplace Transform Theories

HOL Light provides a wide support to analyze systems using
theories of multivariable calculus and Laplace transform. Some defi-
nitions from HOL Light’s theory of the Laplace transform is given in
Table 1. The definitions include the Laplace transform, existence of
the Laplace transform and the exponential-order condition. For more
details, readers are advised to refer to [30, 31]. The proposed for-
mal analysis of the biological circuits and bio-controllers is primarily
based upon this formalization of Laplace transform.

2.3 Reaction Kinetics Based Models

Reaction kinetics [32] involves the interaction of the biological pro-
cesses with each other and the effect of reactions, exhibiting different
rates, on the corresponding processes. The rate of a reaction cap-
tures the evolution of the concentration of the species (reactants and
products) over time. A process is a chain of reactions, commonly
known as pathway, and the study of the rate of these reactions pro-
vides the rate of the overall process. Generally, biological reactions
are categorized as irreversible or reversible.

Analyzing a biological process requires its kinetic reaction based
model, which consists of a set of k species (reactants and prod-
ucts), S = {S1, S2, S3, . . . , Sk} and a set of l reactions, Re =
{Re1, Re2, Re3, . . . , Ren}.
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Table 1 Laplace Transform
Mathematical Form Formalized Form

Laplace Transform

L[f(t)] = F (s) =
∫∞
0 f(t)e−stdt, s ε C

`def ∀s f. laplace_transform f s =
integral {t | &0 ≤ drop t} (λt. cexp (−(s ∗ Cx t)) ∗ f t)

Laplace Existence

f is piecewise smooth and is of exponential order on the positive
real line

`def ∀s f. existence_of_laplace f s⇔
(∀b. f piecewise_differentiable_on interval [&0,b]) ∧
(∃M a. Re s > a ∧ expon_order_condit f M a)

Exponential-order Condition
There exist a constant a and a positive constant M such that
|f(t)| ≤Meat

`def ∀f M a. expon_order_condit f M a⇔
&0 < M ∧ (∀t. &0 ≤ t⇒ ||f (lift t)|| ≤ M ∗ exp (a ∗ t))

An irreversible reaction Rej , {1 ≤ j ≤ l} is generally described
as follows:

Rej : c1,jS1 + c2,jS2 + . . .+ ck,jSk
kj−→

ć1,jS1 + ć2,jS2 + . . .+ ćk,jSk (1)

Similarly, a reversible reaction Rej , {1 ≤ j ≤ l} can be written
as follows:

Rej : c1,jS1 + c2,jS2 + . . .+ ck,jSk
kj

f

�
kjr

ć1,jS1 + ć2,jS2 + . . .+ ćk,jSk (2)

The coefficients c1,j , c2,j , . . . , ck,j , ć1,j , ć2,j , . . . , ćk,j are the
non-negative integers providing the stoichiometries of the species
(reactants and products) taking part in the reaction. The non-negative
integers kj , and kjf and kjr are the kinetic rate constants of the
irreversible, and the forward and reverse kinetic rate constants of the
reversible reactions, respectively [33]. A reversible reaction can be
divided into two irreversible reactions with the forward and reverse
kinetic rate constants representing the kinetic rate constants of the
first and the second reaction, respectively.

The dynamics of the biological systems are generally expressed
by a set of ordinary differential equations as a counterpart to the
above-mentioned reaction-based models. The development of the
system is defined by analyzing the concentration change of the
species, i.e., their time derivatives which can be mathematically
represented as follows:

d[Si]

dt
=

n∑
j=1

si,jvj (3)

where si,j represents the stoichiometric coefficient of the species Si
in reaction Rj (i.e., si,j = ći,j − ci,j ). The parameter vj represents
the flux of the reaction Rj .

For all the reactions from 1 to l, it becomes a vector as v =
(v1, v2, . . . , vl)

T and the corresponding system of ordinary differ-
ential equations can be written in the vectorial form as follows:

d[S]

dt
= Nv (4)

where [S] = (S1, S2, . . . , Sn)T is vector of the concentration of all
of the species taking part in the reaction and N is the stoichiometric
matrix of order k × l.

3 Related Work

Feedback controllers have been widely designed and implemented
in the area of synthetic biology such as genetic circuits and molec-
ular pathways. Chen et al. [34] designed molecular control circuits
using DNA-based technology, which are widely used for integrated
sensing, computation and actuation purposes. Their design is based
on implementing several building-block reaction types and combin-
ing them into a network realizable at the molecular level. However,
the controllers associated with these circuits do not incorporate the
feedback for the underlying system. To cater for this issue, Yor-
danov et al. [35] proposed a computational framework for designing
feedback control circuits constructed from nucleic acids. This is
based on expressing the control and signal processing circuits as the
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reaction based models and development of the controllers such as
proportional-integrator (PI) controller. Moreover, it allows the anal-
ysis of various nucleic acid circuits such as (deoxyribonucleic acid)
DNA and (ribonucleic acid) RNA, using the visual DNA Strand
Displacement (DSD) tool, which is widely used for analyzing the
computational devices implemented using DNA strand displace-
ment. Similarly, Rosenfeld et al. [36] incorporated the negative
feedback for analyzing the synthetic gene circuits. In particular, the
authors studied the important characteristics of the negative autoreg-
ulatory circuit, such as rise-time and stability. Their analysis revealed
the shorter rise-time and increased stability of the gene expression.
Gardne et al. [37] proposed a genetic toggle switch, which is a
synthetic bistable gene-regulatory network and is widely used in
biocomputing and gene therapy. The authors conducted an analysis
for predicting the conditions that are necessary for bistability of the
corresponding network. The controllers considered in all the above-
mentioned works are design specific and their size is also restricted
to only a few genes. Recently, Harris et al. [8] designed genetic cir-
cuits based on the feedback control and its associated biological
phase lag controller of generic nature. Moreover, the authors con-
sidered the reaction based models of these circuits and conducted
the frequency domain analysis of the corresponding systems using
Laplace transform. All the research contributions, presented above,
use the traditional analysis techniques and their associated tools such
as visual DSD and Matlab. Thus, these analyses suffer from their
inherent limitations such as approximation, round off errors, limited
computational resources and the unverified numerical algorithms
present in the core of these tools, and thus cannot ensure the accurate
analysis of the genetic circuits and their associated controllers.

Formal methods have been used as a complementary approach for
analyzing the biological systems. In particular, model checking has
been widely used in the synthetic biology field to formally analyze
the biological circuits and their associated feedback controllers. Yor-
danov et al. [20] proposed a novel approach for formally verifying
the synthetic genetic circuits. The authors developed a state-space
model of the overall system by constructing the individual compo-
nents based on the experimentally obtained characterization data.
Moreover, to demonstrate the practical utilization of their proposed
approach, they formally analyzed a genetic inverter and a genetic
NOR gate using their intended properties specified in linear tempo-
ral logic (LTL). Similarly, Bartocci et al. [21] provided an approach
for designing the synthetic biological circuits by specifying their
behavior in terms of signal temporal logic (STL). Moreover, the
authors utilized their proposed framework for synthesizing a half
adder. Madsen et al. [22] used statistical model checking for formally
analyzing genetic circuits. In particular, they proposed a framework,
which converts a genetic circuit model into its stochastic model, i.e.,
continuous-time Markov chain, which is further used to conduct the
transient Markov chain analysis of these circuits. Finally, they uti-
lized their proposed framework to formally analyze a genetic toggle
switch. All the model checking based analyses, presented above,
suffer from the state-space explosion problem and therefore are not
suitable for handling larger systems.

Higher-order logic theorem proving has also been used to formal
reason about the biological systems and molecular pathways. Ahmad
el at. [24, 25] proposed a formalization of Zsyntax using HOL
theorem prover. Moreover, they utilized their proposed framework
for formally analyzing the TP53 degradation pathway and Glycolytic
leading from D-Glucose to Fructose-1,6-bisphosphate. Recently,
Abed et al. [26] performed the Laplace transform based analysis
of the genetic circuits, i.e., the activated and the repressed expres-
sions of protein using the HOL Light theorem prover. However,
their proposed approach does not cater for the reaction kinetic based
dynamical models of the biological circuits and bio-controllers. Sim-
ilarly,the authors in [15] built a framework, using HOL Light, to
provide the formal support for the reaction kinetic based dynamical
analysis of the biological systems. The developed framework con-
siders the reaction-based models of the real-valued species (reactant
and products). Whereas, for performing the Laplace transform based
analysis of the genetic circuits and their associated bio-controllers,
we need to formalize the species, contributing to their dynamical
behaviour, as complex-valued functions. This requires formalizing

the notion of reaction kinetics for the complex-valued reactants and
products, which is the main scope of this paper.

4 Formalization of Reaction Kinetics for
Complex-valued Species

In this section, we present the higher-order-logic formalization of the
reaction kinetics for the complex-valued reactants and products. In
reaction kinetic based modeling, a biological system (a pathway or a
network) is modeled by a set of biological reactions, which are gen-
erally categorised as of two types, such as reversible and irreversible.
We formally model this fact by using the inductive enumerating
data-type feature of HOL Light as follows:

Definition 1. define_type "type_of_reaction =
irreversible | reversible"

A generic model of the biological reaction consists of lists of
reactants and products, and its corresponding kinetic rate constants
such as forward, and forward and reverse, for the case of irreversible
and reversible reactions, respectively. In HOL Light, we can use
the available types (e.g., Real (R), Complex (C)) to abbreviate new
types. Therefore, we use the feature of type abbreviation in HOL
Light to define new types for a biological reaction as follows:

Definition 2. new_type_abbrev ("reactant",‘:((C × N))‘)
new_type_abbrev ("product",‘:((C × N))‘)
new_type_abbrev ("kinetic_rates",‘:((C × C))‘)
new_type_abbrev ("biological_reaction",‘:(type_of_reaction ×

((reactant) list × (product) list × kinetic_rates)‘)
new_type_abbrev ("biological_reactions",‘:

(biological_reaction) list‘)

The type reactant is a pair, capturing a single reactant of the bio-
logical reaction in such a way that its first element represents the
concentration of the complex-valued reactant, whereas its second
element models its stoichiometry. Similarly, the type kinetic_rates
models the kinetic rate constants of the biological reaction. For
an irreversible reaction, the first element of the pair captures its
kinetic rate constant and the second element is zero. Whereas, for
a reversible reaction, the pair models the forward and reverse kinetic
rate constants, respectively.

To obtain a dynamical model of a biological system from its reac-
tion based model, we require finding out its flux vector and the
stoichiometric matrix. We formalize the flux of a single reaction,
based on the law of mass action in HOL Light as follows:

Definition 3. `def ∀t Rt Pd k.
flux_single_react ((t,Rt,Pd,k):biological_reaction) =

if t = irreversible then flux_irrever Rt Pd k
else flux_rever Rt Pd k

where flux_irrever and flux_rever provide the flux of the irre-
versible and reversible reactions, respectively, which are chosen
using the conditional expression on the type of the reaction and are
formalized as follows:

Definition 4. `def ∀t Rt Pd k.
flux_irrever ((t,Rt,Pd,k):biological_reaction) =

FST k ∗ mk_flux Rt
`def ∀t Rt Pd k. flux_rever ((t,Rt,Pd,k):biological_reaction) =

FST k ∗ mk_flux Rt - SND k ∗ mk_flux Pd

where FST and SND in the above definition accept the rate con-
stants of the reaction as a pair (C,C) and return its first and second
element, respectively. Similarly, mk_flux accepts a list of reactants R
or products P and transforms the concentrations in to their exponent
form according to the law of mass action, where the concentration
of a molecule is implemented as the base while the corresponding
stoichiometry as the exponent [38].
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Table 2 Classical Properties of the Complex-valued Matrices

Name Properties
Commutativity of matrix addition `thm ∀X Y. X + Y = Y + X
Associativity of matrix addition `thm ∀X Y Z. X + (Y + Z) = (X + Y) + Z
Associativity of matrix scalar multiplication `thm ∀a b X. a %%% (b %%% X) = (a ∗ b) %%% X
Associativity of matrix vector multiplication `thm ∀X Y x. X ∗∗ Y ∗∗ x = (X ∗∗ Y) ∗∗ x
Left Distributivity of matrix scalar multiplication `thm ∀X b c. (b ± c) %%% X = b %%% X ± c %%% X
Right Distributivity of matrix scalar multiplication `thm ∀X Y c. c %%% (X ± Y) = c %%% X ± c %%% Y
Left Additive identity `thm ∀X. cmat 0 + X = X
Right Additive identity `thm ∀X. X + cmat 0 = X
Left Multiplicative identity `thm ∀X. cmat 1 ∗ X = X
Right Multiplicative identity `thm ∀X. X ∗ cmat 1 = X
Left Multiplicative of zero `thm ∀X. cmat 0 ∗ X = cmat 0
Right Multiplicative of zero `thm ∀X. X ∗ cmat 0 = cmat 0

Generally, a biological pathway is composed of a chain of
reversible and irreversible reactions in an arbitrary sequence. We
model the flux vector for a chain of biological reactions, using the
flux of a single reaction (flux_sing_reaction), as follows:

Definition 5. `def ∀BL.
flux_vector BL = vector (MAP flux_sing_reaction BL)

The function flux_vector takes a list of reactions (biological_rea
ctions, Definition 2) and returns a vector (Rk) containing the fluxes
of all the reactions, where k captures the length of the list BL. Here,
we use the HOL Light function MAP for mapping the flux of a single
reaction, i.e., flux_sing_reaction on every element of the list BL.

Next, in order to formalize the stoichiometric matrix, we require
the notion of the complex-valued matrices, which are formalized as
part of our proposed framework and some of their verified properties
are given in Table 2. The HOL Light operator %%% presents the
multiplication of a complex number with a complex-valued matrix.
Similarly, cmat 0 provides the complex-valued zero matrix of order
M ×N . More details about the formalization of the complex-valued
matrices can be found at [38].

Now, we formalize the notion of stoichiometric matrix, which is
a collection of column vectors and is given as follows:

Definition 6. `def ∀BL. stiochio_mat (BL:biological_reactions)
= ctransp (vector (MAP stiochio_mat_single_react BL))

The function stiochio_mat accepts a list of reactions (biological
_reactions, Definition 2) and returns a matrix having m rows and k
columns, where m and k represent the number of reactions and the
species (reactant and products), respectively. The HOL Light func-
tion ctransp models the transpose of the complex-valued matrix.
Similarly, stiochio_mat_single_react provides a vector (Rk) cor-
responding to the column of the stoichiometric matrix. Moreover,
the function MAP is used to apply it on every element of the list BL.
More details about the formalization of the stoichiometric matrix can
be found at [38].

Finally, in order to present the derivatives of the concentrations of
the reactant and product in matrix form (left side of Equation (4)),
we define concen_vector_deriv as follows:

Definition 7. `def ∀BL t. concen_vector_deriv BL t =
vector (mk_concen_vect_deriv BL t)

where mk_concen_vect_deriv accepts a complex-valued list BL
containing the concentrations of all the species (reactants and prod-
ucts) taking part in the reaction. It uses a HOL Light function
vector_derivative, which represents the vector-valued derivative of
a function and maps it to every element of the list BL.

We can utilize the formalization of the flux vector and stoichio-
metric matrix to develop a reaction kinetic model of an arbitrary
biological system (pathway or network) consisting of any number
of reactions and species. For example, a biological pathway consist-
ing of a list of S biological species and R biological reactions can be
represented by the following generic reaction kinetic model:

((concen_vector_deriv S t):CM ) =
((stoichio_mat R):CN

M
) ∗∗ flux R

For illustration purposes, we apply our formalization of reaction
kinetics, for the complex-valued biological entities (reactants and
products), to develop reaction kinetic model and an equivalent dif-
ferential equations based model of a simple metabolic pathway [39],
as shown in Figure 2.

Fig. 2: Simple Metabolic Pathway [39]

The concentrations of the substrate and product are represented
as S0 and P , respectively. Whereas, S1, S2 and S3 are the inter-
mediate productions. All reactions except the production of S1 are
irreversible reactions. Moreover, each reaction is catalysed by an
enzyme Ei with concentration ei. The reaction rates are given as
follows:

v1 = e1([S0]− s1),

v2 = e2s1,

v3 = e3s1,

v4 = e4s3,

v5 = e5s2

The corresponding dynamics (differential equation model) is
mathematically expressed as follows [39]:

d[S1]

dt
= e1([S0]− [S1])− (e2 + e3)[S1] (5)

d[S2]

dt
= e2[S1] + e4[S3]− e5[S2] (6)

d[S3]

dt
= e3[S1]− e4[S3] (7)

(8)

We first formalize the reaction-based model of the simple
metabolic pathway, using Definition 2, in HOL Light as follows:

Definition 8. `def ∀S0 S1 S2 S3 P e1 e2 e3 e4 e5 t.
react_model_simp_meta_path

S0 S1 S2 S3 P e1 e2 e3 e4 e5 t =
[reversible,[S0 t, 1; S1 t, 0],
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[S0 t, 0; S1 t, 1], e1, Cx (&1);
[irreversible,[S1 t, 1; S2 t, 0],

[S1 t, 0; S2 t, 1], e2, Cx (&0);
[irreversible,[S1 t, 1; S3 t, 0],

[S1 t, 0; S3 t, 1], e3, Cx (&0);
[irreversible,[S3 t, 1; S2 t, 0],

[S3 t, 0; S2 t, 1], e4, Cx (&0);
[irreversible,[S2 t, 1; P t, 0],

[S2 t, 0; P t, 1], e5, Cx (&0) ]

Next, we formally verify the transformation of the reaction-based
model to its corresponding dynamical model in HOL Light as
follow:

Theorem 1. `thm ∀S0 S1 S2 S3 P e1 e2 e3 e4 e5 t.
(concen_vector_deriv [S1; S2; S3] t =
stoichio_matrix

(react_model_simp_meta_path
S0 S1 S2 S3 P e1 e2 e3 e4 e5 t) ∗∗

flux_vector
(react_model_simp_meta_path

S0 S1 S2 S3 P e1 e2 e3 e4 e5 t))⇐⇒
(vector_derivative S1 (at t) =
e1 ∗ (S0 t - S1 t) - (e2 + e3) ∗ S1 t ∧
vector_derivative S2 (at t) =

e2 ∗ S1 t + e4 ∗ S3 t - e5 ∗ S2 t ∧
vector_derivative S3 (at t) = e3 ∗ S1 t - e4 ∗ S3 t)

The proof of the above theorem is based on the formal defini-
tions of the stoichiometric matrix (stoichio_matrix, Definition 6),
flux vector (flux_vector, Definitions 3-5) and derivatives of the con-
centration of species (concen_vector_deriv, Definition 7), prop-
erties of vectors and matrices alongwith some complex arithmetic
reasoning.

We further use our formalization of reaction kinetics for formally
analyzing the gene expression regulation as will be described later.

5 Formalization of Block Diagram
Representations of Biological Circuits

In this section, we present our formalization of block diagram repre-
sentations of the biological circuits. Mainly, the section provides the
formal definitions corresponding to the fundamental building blocks
(subsystems) of block diagram representations. These definitions
enable us to formally model the block diagrams of a generic bio-
logical circuit in the s-domain and to find out the transfer function of
any biological circuit from its block diagram representation. The pre-
sented formalization is basically inspired from the block diagrams of
the control systems [40].

Configuration 1: Series Representation The transfer function
of a sum of two components (subsystems) of a biological circuit,
which can be any proteins or genes, in the case of a genetic circuit,
is equal to the product of the transfer function of the individual com-
ponents as depicted in Figure 3. We formalize this configuration for
an arbitrary (N) number of components of a circuit as follows:

Definition 9. `def ∀Ai. series_comp [A1; A2; ...; AN] =
N∏
i=1

Ai

The function series_comp accepts the transfer functions of indi-
vidual components of the circuit as a list of complex numbers and
returns the transfer function of the overall circuit as a product of all
individual transfer functions.

A1 A2 A1*A2

Fig. 3: Series Representation

Configuration 2: Summation Junction The summation junction
for various components of a biological circuit is an addition module
that provides the summation of the transfer functions of individual
components as depicted in Figure 4. For an arbitrary number (N) of
components of a circuit, having transfer functions represented by a
list of complex numbers, we formalize this configuration as follows:

Definition 10. `def ∀Ai. summ_jun [A1; A2; ...; AN] =
N∑
i=1

Ai

Fig. 4: Summation Junction

Configuration 3: Pickoff Point The pickoff point configuration
represents the mapping of a component of a biological circuit to a
parallel branch of components as shown in Figure 5. We model this
configuration in HOL Light as follows:

Definition 11. `def ∀α Ai. pick_point [A1; A2; ...; AN] =
[α ∗ A1; α ∗ A2; ...; α ∗ AN]

The function pick_point takes the transfer function of the first
component as a complex number and the transfer functions of
the other components in parallel as a list of complex numbers,
and returns the corresponding transfer functions corresponding to
the equivalent block diagram representation as a list of complex
numbers.

A1

A2

A3

α

α*A1

α*A2

α*A3

Fig. 5: Pickoff Point

Configuration 4: Feedback Block The feedback block config-
uration is the fundamental representation for modeling the closed
loop controllers for the biological circuits as shown in Figure 6. Due
to the presence of the feedback signal, it is primarily represented
by an infinite summation of branches that consists of serially con-
nected components, as shown in Figure 6. We formalize the transfer
function of each branch as follows:

Definition 12. `def ∀α β n. branch_tf α β n =
n∏

i=0
series_comp [α;β]

The function branch_tf takes the forward path transfer function
α (a protein or gene), the feedback path (feedback signal) transfer
function β and the number of the branch (n), and returns a complex
number representing the transfer function of the nth branch.
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α 

β

+

α α β

+

α β α β

+

+

Fig. 6: Feedback Block

Now, we formalize the feedback block representation using our
function branch_tf as follows:

Definition 13. `def ∀α β. feedback_block α β =

series_comp [α;
∞∑
k=0

branch α β k]

The function feedback_block takes the transfer function of for-
ward path (α) and the transfer function of feedback path (β) and
returns the transfer function by forming the series network of the
final forward path transfer function and the summation of all the
possible infinite branches.

For illustration, we now apply our formalization of the block
diagram representations to formally model and analyze a tunable
synthetic gene oscillator [41], as shown in Figure 7.

F(s)

s + D1

1 LacI(s)

_
+

F2
+

_

F1

+

F3

F4

s + D2

1

araC lacI

arabinose

IPTG

Fig. 7: Tunable Synthetic Gene Oscillator [41]

The genes araC and lacI have identical hybrid promoters that can
be activated by AraC in the presence of arabinose and repressed by
LacI in the absence of IPTG. Moreover, araC has a positive autoreg-
ulation, whereas, LacI has a negative autoregulation, as shown in
Figure 7. We formalize the block diagram representation of the tun-
able synthetic gene oscillator, depicted in Figure 7, in HOL Light as
follows:

Definition 14. `def ∀s D1 D2 F1 F2 F3 F4.
bdr_tsgo s D1 D2 F1 F2 F3 F4 =

feedback_block

(
series_comp

[
feedback_block

(
Cx(&1)

s + Cx D1

)
(Cx F1) ; Cx F2;

feedback_block
(

Cx(&1)
s + Cx D2

)
(– Cx F3)

] )
(– Cx F4)

Next, we use the formalization of the block diagram representa-
tion of the tunable synthetic gene oscillator to formally verify its
transfer function as the following HOL Light theorem:

Theorem 2. `thm ∀s D1 D2 F1 F2 F3 F4.
[A1] : (s + Cx (D1 − F1)) 6= Cx (&0) ∧
[A2] : (s + Cx (D2 + F3)) 6= Cx (&0) ∧
[A3] : ((s + Cx (D1 + F1))(s + Cx (D2 + F3))

− Cx F4) 6= Cx (&0) ∧
[A4] :

∣∣∣∣∣∣∣∣ Cx F1
s + Cx (D1 − F1)

∣∣∣∣∣∣∣∣ < &1

[A5] :

∣∣∣∣∣∣∣∣ Cx F3
s + Cx (D2 + F3)

∣∣∣∣∣∣∣∣ < &1

[A6] :

∣∣∣∣∣∣∣∣ Cx (F2 ∗ F4)

(s + Cx (D1 + F1))(s + Cx (D2 + F3))− Cx F4

∣∣∣∣∣∣∣∣ < &1

[A7] : (s2 + s ∗ Cx (D1 + D2 − F1 + F2) +
Cx (D1 ∗ D2) + Cx (D1 ∗ F3)− Cx (D2 ∗ F1)−

Cx (F1 ∗ F3) + Cx (F2 ∗ F4)) 6= Cx (&0)
⇒ bdr_tsgo s D1 D2 F1 F2 F3 F4 =

Cx F2

s2 + s ∗ [Cx (D1 + D2 − F1 + F2)] +
Cx (D1 ∗ D2) + Cx (D1 ∗ F3)− Cx (D2 ∗ F1)−

Cx (F1 ∗ F3) + Cx (F2 ∗ F4)

Assumptions A1-A7 provide conditions on various parameters of
the tunable synthetic gene oscillator. The conclusion of the above
theorem presents the transfer function of the gene oscillator based on
its block diagram representation. The proof of Theorem 2 is based on
Definitions 9 and 13 along with some complex arithmetic reasoning.

Our formalization of the foundational configurations, presented
above [38], enables us to formally model the block diagram rep-
resentations of the generic biological circuits and their associated
controllers as will be illustrated in the next section.

6 Formal Analysis of the Genetic Circuits and
Controllers

Gene expression is a technique for transmitting information from
the passive deoxyribonucleic acid (DNA) to the active proteins and
is widely used in cellular biology. The process of this transmission
is performed in two steps. In the first step, a section of DNA is
read out into the ribonucleic acid (RNA) and is known as transcrip-
tion. The second step, namely translation, involves conversion of a
short strand of transcribed RNA into protein. This process is usu-
ally regulated in synthetic systems by transcription factors (TFs),
which control the initiation rate of the transcription of a gene and its
corresponding expression. TFs are of two types, namely activators
and repressors. Activators increase the transcription rate, whereas the
repressors inhibit transcription. We use our proposed formalization
for formally analyzing the genetic circuits of the gene expression
regulation, the activated and repressed expressions of protein, and
phase lead and lag controllers.

6.1 Formal Dynamical Analysis

6.1.1 Gene Expression Regulation: The reaction-based model
of the interaction between a TF, X (an activating or repressing TF)
and the regulated gene G, is represented as follows [8]:

G + nX
kf−−⇀↽−−
kr

G : Xn (9)
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where n captures the number of TF molecules binding to the gene
and G : Xn represents the gene-TF complex. Similarly, kf and kr
provides the forward and reverse kinetic rates of the reaction, respec-
tively. The corresponding dynamics (differential equation model) is
mathematically expressed as follows [8]:

d[G]

dt
= kr[G : Xn]− kf [G][X]n (10)

d[X]

dt
= nkr[G : Xn]− nkf [G][X]n (11)

d[G : Xn]

dt
= kf [G][X]n − kr[G : Xn] (12)

The above equation can be expressed in the vectorial form as
follows:

d[G]
dt
d[X]
dt

d[G:Xn]
dt

 =

−1
−n
1

 [ kf [G][X]n − kr[G : Xn]
]

(13)

We first formalize the reaction-based model of the gene expres-
sion regulation in HOL Light as follows:

Definition 15. `def ∀n G X GXn kf kr n t.
react_model_gene_expre_reg n G X GXn t =

[reversible,[G t, 1; X t, n; GXn t, 0],
[G t, 0; X t, 0; GXn t, 1], kf, kr]

Next, we formally verify the transformation of the reaction-based
model to its corresponding dynamical model as the following HOL
Light theorem:

Theorem 3. `thm ∀n G X GXn t kr kf n.
(concen_vector_deriv [G; X; GXn] t =
stoichio_matrix

(react_model_gene_expre_reg G X GXn kf kr n t) ∗∗
flux_vector

(react_model_gene_expre_reg G X GXn kf kr n t))⇐⇒
(vector_derivative G (at t) = kr ∗ GXn t - kf ∗ G t ∗ (X t)n ∧
vector_derivative X (at t) =

Cx (&n) ∗ kr ∗ GXn t - Cx (&n) ∗ kf ∗ G t ∗ (X t)n ∧
vector_derivative GXn (at t) = kf ∗ G t ∗ (X t)n - kr ∗ GXn t)

The proof of the above theorem is based on the following lemmas
for the verification of concen_vector_deriv, stoichio_matrix and
flux_vector alongwith some complex arithmetic reasoning.

Lemma 1. `thm ∀G X GXn t.
concen_vector_deriv [G; X; GXn] t =

vector [vector_derivative G (at t);
vector_derivative X (at t); vector_derivative GXn (at t)]

Lemma 2. `thm ∀G X GXn kf kr n t.
stoichio_matrix

(react_model_gene_expre_reg G X GXn kf kr n t) =
vector [vector [- Cx (&1)]; vector [- Cx (&n)]; vector [Cx (&1)]]

Lemma 3. `thm ∀G X GXn kf kr n t. [A]: (0 < n)
⇒ flux_vector

(react_model_gene_expre_reg G X GXn kf kr n t) =
vector [kf ∗ G t ∗ (X t)n t - kr ∗ GXn t]

Lemma 4. `thm ∀G X GXn kf kr n t. [A]: (n = 0)
⇒ flux_vector

(react_model_gene_expre_reg G X GXn kf kr n t) =
vector [kf ∗ G t - kr ∗ GXn t]

The dynamical model of the gene expression regulation is further
used for analyzing the genetic circuits of the activated and repressed
expressions of protein in the following sections.

6.1.2 Activated Expression of Protein: The genetic circuit of
the activated expression of protein is depicted in Figure 8(a). It
involves the interaction of the incoming activating TF A with its
promoter and the regulation of the expression of gene Y produc-
ing the protein Y. The block diagram representation of the activated
expression is shown in Figure 8(c) by a gain block of +γ∗x with
x = A.

Y

YA

Y

YR
(a)

(b)

± γx
*

(c)

Y(s)U(s) s + α 
1

Fig. 8: (a) Genetic Circuit Diagram of Activated Expression
(b) Genetic Circuit Diagram of Repressed Expression (c) Block
Diagram Representation for a Single Gene with Activated and
Repressed Expressions

The dynamical model of the activated expression of protein
is mathematically expressed as the following linear differential
equation [8]:

dy

dt
+ αy = γ∗Au (14)

The corresponding transfer function is mathematically expressed
as:

Y (s)

U(s)
=

γ∗A
s+ α

(15)

In order to model the dynamical behaviour, we first model the
linear differential equation of order n as:

Definition 16. `def ∀k f t. differ_equat_order_n k l f t =
vsum (0..k) (λi. EL i [α1;α2;...;αi] ∗

higher_order_derivative i f t)

The function differ_equat_order_n takes the order of the linear
differential equation k, list of coefficients l, a differentiable function
f and the differentiation variable t and returns the nth order linear
differential equation.

Now, we model the dynamical behaviour of the activated expres-
sion as the following HOL Light function [26]:

Definition 17. `def ∀α. olst_de_ae α = [Cx α; Cx (&1)]
`def ∀γA∗. ilst_de_ae γA

∗ = [Cx γA
∗]

`def differ_equat_ae u y t α γA
∗ ⇔

differ_equat_order_n 1 (olst_de_ae α) y t =
differ_equat_order_n 0 (ilst_de_ae γA

∗) u t

To formally verify the transfer function of the activated expres-
sion based on its dynamical model, we first model its block diagram
representation using our formalization in HOL Light as [26]:

Definition 18. `def ∀α γA∗.
bdr_ae α γA

∗ = series_comp
[
Cx γA

∗; Cx(&1)
s + Cx α

]
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Next, we verify the transfer function of the activated expression
based on its block diagram representation as the following HOL
Light theorem [26]:

Theorem 4. `thm ∀α γA∗. [A]: (s + Cx α) 6= Cx (&0)

⇒ bdr_ae α γA
∗ =

Cx γA
∗

s + Cx α

The proof of the above theorem is based on Definition 9 along
with some arithmetic reasoning. Now, we formally verify the transfer
function, obtained from Theorem 4, based on the dynamical model
as follows [26]:

Theorem 5. `thm ∀α γA∗ y u s.
[A1] : &0 < γA

∗ ∧ [A2] : &0 < α ∧
[A3] : ∀t. differen_higher_derivat u y t ∧
[A4] : existence_of_laplace_higher_derivat u y ∧
[A5] : zero_ini_condit u y ∧
[A6] : (∀t. differ_equat_ae u y t α γA

∗) ∧
[A7] : (laplace_transform u s 6= Cx (&0)) ∧
[A8] :

(
Cx(&1)

s + Cx α
6= Cx(&0)

)
⇒ laplace_transform y s

laplace_transform u s
=

Cx γA
∗

s + Cx α

Assumptions A1-A2 model the positivity conditions on circuit’s
parameters. Assumptions A3-A4 provide the differentiability and
condition of the existence of the Laplace transform of the higher-
order derivative of y up to order 1 and and the function u, respec-
tively. Similarly, Assumption A5 models the zero initial conditions
for y and u. Assumption A6 presents the dynamical behaviour of the
activated expression. Assumptions A7-A8 ensure that the denomi-
nator of the transfer function, presented in the conclusion of the
above theorem, provides a valid expression. Finally, the conclu-
sion provides the transfer function of the activated expression. The
proof of Theorem 5 is done almost automatically using the auto-
matic tactic TFUN_TAC, which is developed as part of our proposed
formalization.

6.1.3 Repressed Expression of Protein: Figure 8(b) depicts
the genetic circuit of the repressed expression of protein. It involves
the interaction of the incoming repressing TF A with its promoter
and the regulation of the expression of gene Y producing the pro-
tein Y. The block diagram representation of the repressed expression
is shown in Figure 8(c), by a gain block of −γ∗x with x = R.
The dynamical model of the repressed expression of protein is
mathematically expressed as [8]:

dy

dt
+ αy = −γ∗Ru (16)

The corresponding transfer function is mathematically expressed
as:

Y (s)

U(s)
=
−γ∗R
s+ α

(17)

We formally verified the block diagram representation of the
repressed expression, its transfer function based on its block dia-
gram and its dynamical model and the details about this verification
can be found at [38].

6.1.4 Autoactivation of Gene: The activation of its own
expression by a gene is known as autoactivation. The block dia-
gram representation of the protein expression with autoactivation is
depicted in Figure 9.

The dynamical model of the protein expression with autoactiva-
tion is mathematically expressed as the following linear differential
equation [8]:

γA1
*ΓA2

* Y(s)U(s) s + α 
1+

+

γA2
*ΓA1

*

Fig. 9: Block Diagram Representation of Protein Expression with
Autoactivation

dy

dt
+ (α− γ∗A2

Γ∗A1
)y = γ∗A1

Γ∗A2
u (18)

The corresponding transfer function is mathematically expressed
as:

Y (s)

U(s)
=

γ∗A1
Γ∗A2

s+ α− γ∗A2
Γ∗A1

(19)

We model the dynamical behaviour of the protein expression with
autoactivation as the following HOL Light function:

Definition 19. `def ∀α γA2

∗ ΓA1

∗. olst_de_aa α γA2

∗ ΓA1

∗ =
[Cx α - Cx γA2

∗ ∗ Cx ΓA1

∗; Cx (&1)]
`def ∀γA1

∗ ΓA2

∗. ilst_de_aa γA1

∗ ΓA2

∗ = [Cx γA1

∗ ∗ Cx ΓA2

∗]
`def differ_equat_aa u y t α γA2

∗ ΓA1

∗ γA1

∗ ΓA2

∗ ⇔
differ_equat_order_n 1 (olst_de_aa α γA2

∗ ΓA1

∗) y t =
differ_equat_order_n 0 (ilst_de_aa γA1

∗ ΓA2

∗) u t

To formally verify the transfer function of the protein expression
with autoactivation based on its dynamical model, we first model
its block diagram representation using our formalization in HOL
Light as:

Definition 20. `def ∀s α γA1

∗ γA2

∗ ΓA1

∗ ΓA2

∗.
bdr_aa s α γA1

∗ γA2

∗ ΓA1

∗ ΓA2

∗ =

series_comp
[
Cx γA1

∗ ∗ Cx ΓA2

∗;

feedback_block
(

Cx(&1)
s + Cx α

) (
Cx γA2

∗ ∗ Cx ΓA1

∗) ]
Next, we verify the transfer function of the protein expression

with autoactivation based on its block diagram representation as the
following HOL Light theorem:

Theorem 6. `thm ∀s α γA1

∗ γA2

∗ ΓA1

∗ ΓA2

∗.
[A1] : &0 < γA2

∗ ∧ [A2] : &0 < ΓA1

∗ ∧
[A3] : (s + Cx α) 6= Cx (&0) ∧
[A4] : (s + Cx α− Cx γA2

∗ ∗ Cx ΓA1

∗) 6= Cx (&0) ∧

[A5] :

∣∣∣∣∣∣∣∣ Cx γA1

∗ ∗ Cx ΓA2

∗

s + Cx α − Cx γA2
∗ ∗ Cx ΓA1

∗

∣∣∣∣∣∣∣∣ < &1

⇒ bdr_aa s α γA1

∗ γA2

∗ ΓA1

∗ ΓA2

∗ =
Cx γA1

∗ ∗ Cx ΓA2

∗

s + Cx α − Cx γA2
∗ ∗ Cx ΓA1

∗

Assumptions A1-A5 provide various conditions on circuit’s
parameters. The conclusion of the above theorem presents the trans-
fer function of the autoactivation of gene based on its block diagram
representation. The proof of Theorem 6 is based on Definitions 9
and 13 along with some complex arithmetic reasoning. Now, we for-
mally verify the transfer function, obtained from Theorem 6, based
on the dynamical model as follows:

Theorem 7. `thm ∀α γA1

∗ γA2

∗ ΓA1

∗ ΓA2

∗ y u s.
[A1] : &0 < α ∧ [A2] : &0 < γA2

∗ ∧ [A3] : &0 < ΓA1

∗ ∧
[A4] : &0 < γA1

∗ ∧ [A5] : &0 < ΓA2

∗ ∧
[A6] : ∀t. differen_higher_derivat u y t ∧
[A7] : existence_of_laplace_higher_derivat u y ∧
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[A8] : zero_ini_condit u y ∧
[A9] : (∀t. differ_equat_aa u y t α γA2

∗ ΓA1

∗ γA1

∗ ΓA2

∗) ∧
[A10] : (laplace_transform u s 6= Cx (&0)) ∧

[A11] :

(
Cx(&1)

s + Cx α − Cx γA2
∗ ∗ Cx ΓA1

∗ 6= Cx(&0)

)
⇒ laplace_transform y s

laplace_transform u s
=

Cx γA1

∗ ∗ Cx ΓA2

∗

s + Cx α − Cx γA2
∗ ∗ Cx ΓA1

∗

Assumptions A1-A5 capture the positivity conditions on circuit’s
parameters. Assumptions A6-A7 model the differentiability and con-
dition of the existence of the Laplace transform of the higher-order
derivative of y up to order 1 and the function u, respectively.
Similarly, Assumption A8 provides the zero initial conditions for
y and u. Assumption A9 models the dynamical behaviour of the
activated expression. Assumptions A10-A11 ensure that the denom-
inator of the transfer function, presented in the conclusion of the
above theorem, provides a valid expression. Finally, the conclusion
presents the transfer function of the autoactivation. The proof of
the above theorem is done almost automatically using the automatic
tactic TFUN_TAC.

6.1.5 Phase Lag and Lead Controllers: The block diagram
representation for phase lag and lead controllers is depicted in
Figure 10. The variable γ∗c is the promoter gain of the controllers,
whereas, B1

∗ and B2
∗ are the gains of the downstream promoters.

The variable α represents the degradation/dilution rate.

± γc
* Y(s)U(s) s + α 

1
B1

*

B2
*

+

+

Fig. 10: Block Diagram of a Genetic Phase Lead (+) and Phase Lag
(-) Controller

The dynamical model of the phase lag controller is mathemati-
cally expressed as [8]:

dy

dt
+ αy = B2

∗ du
dt

+ (αB∗2 − γ∗cB∗1)u (20)

The corresponding transfer function is given by the following
mathematically expression:

Y (s)

U(s)
= B∗2

s+ α− γ∗
cB

∗
1

B∗
2

s+ α
(21)

We model the dynamical behaviour of the phase lag controller as
the following HOL Light function:

Definition 21. `def ∀α. olst_de_plagc α = [Cx α; Cx (&1)]
`def ∀α γc∗ B1

∗ B2
∗. ilst_de_plagc α γc∗ B1

∗ B2
∗ =

[Cx α ∗ Cx B∗2 − Cx γ∗c ∗ Cx B∗1 ; Cx B2
∗]

`def differ_equat_plagc u y t α γc∗ B1
∗ B2

∗ ⇔
differ_equat_order_n 1 (olst_de_plagc α) y t =
differ_equat_order_n 1 (ilst_de_plagc α B1

∗ B2
∗ γc
∗) u t

To formally verify the transfer function of the activated expres-
sion based on its dynamical model, we first model its block diagram
representation using our formalization in HOL Light as:

Definition 22. `def ∀s α γc∗ B1
∗ B2

∗.

bdr_plagc s α γc∗ B1
∗ B2

∗ = summ_jun
[
series_comp[

− Cx γc∗;
Cx(&1)

s + Cx α
; Cx B1

∗
]
; Cx B2

∗
]

Next, we verify the transfer function of the phase lag controller
based on its block diagram representation as follows:

Theorem 8. `thm ∀s α γc∗ B1
∗ B2

∗.
[A]: (s + Cx α) 6= Cx (&0)
⇒ bdr_plagc α γc∗ B1

∗ B2
∗ =

Cx B2
∗ ∗ (s + Cx α) + Cx γc∗ ∗ Cx B2

∗

(s + Cx α)

The proof of the above theorem is mainly based on Definitions 9
and 10 along with some complex arithmetic reasoning. We also for-
mally verified the transfer function of the phase lag controller based
on its dynamical model. Similarly, we formalized the dynamical
model and block diagram representation of the phase lead controller
and formally verified its transfer function. The details about all these
verification results can be found in our proof script [38].

6.1.6 Genetic Phase Lag Controller in Feedback with a Sin-
gle Gene: The block diagram representation of the genetic phase
lag controller in feedback with a single gene is depicted in Figure 11.

E(s)
s + αp

1
s + αc

1 Y(s)

+

+
γ1

*Γ2
*γ3

*

Γ1
*γ2

*

+
_

X(s)

Fig. 11: Genetic Phase Lag Controller in Feedback with a Single
Gene

The dynamical model of this phase lag controller is mathemati-
cally expressed as follows [8]:

d2y

dt2
+ (αc + αp)

dy

dt
+ αcαpy = Γ∗1γ

∗
2
de

dt
+ (αcΓ

∗
1γ
∗
2 + γ∗1Γ

∗
2γ
∗
3 )e

(22)
The corresponding transfer function is mathematically expressed

as [8]:

Y (s)

U(s)
=
sΓ∗1γ

∗
2 + (αcΓ

∗
1γ
∗
2 + γ∗1Γ

∗
2γ
∗
3 )

s2 + s(αc + αp) + αcαp
(23)

We model the dynamical behaviour of the phase lag controller as
the following HOL Light function:

Definition 23.̀ def ∀αc αp. olst_de_plcnf αc αp =
[Cx αc ∗ Cx αp; Cx αc + Cx αp; Cx (&1)]

`def ∀αc γ1
∗ γ2

∗ γ3
∗ Γ1

∗ Γ2
∗.

ilst_de_plcnf αc γ1
∗ γ2

∗ γ3
∗ Γ1

∗ Γ2
∗ =

[Cx αc
∗ ∗ Cx Γ1∗ ∗ Cx γ2∗ +

Cx γ1∗ ∗ Cx Γ2∗ ∗ Cx γ3∗; Cx Γ1∗ ∗ Cx γ2∗]
`def differ_equat_plcnf αc αp γ1

∗ γ2
∗ γ3

∗ Γ1
∗ Γ2

∗ u y t⇔
differ_equat_order_n 2 (olst_de_plcnf αc αp) y t =
differ_equat_order_n 1

(ilst_de_plcnf αc γ1
∗ γ2

∗ γ3
∗ Γ1

∗ Γ2
∗) u t

To formally verify the transfer function of the phase lag con-
trollers based on its dynamical model, we first model its block
diagram representation using our formalization in HOL Light as:

Definition 24. `def ∀s αc αp γ1
∗ γ2

∗ γ3
∗ Γ1

∗ Γ2
∗.

bdr_plcnf s αc αp γ1
∗ γ2

∗ γ3
∗ Γ1

∗ Γ2
∗

IET Systems Biology, pp. 1–13
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= series_comp
[
summ_jun

[
series_comp[

Cx γ3∗;
Cx(&1)

s + Cx αc
; Cx γ1∗ ∗ Cx Γ2∗

]
;

Cx Γ1∗ ∗ Cx γ2∗
]
;

Cx(&1)

s + Cx αp

]

Next, we verify the transfer function of the phase lag controller
based on its block diagram representation as the following HOL
Light theorem:

Theorem 9. `thm ∀s αc αp γ1
∗ γ2

∗ γ3
∗ Γ1

∗ Γ2
∗.

[A1] : (s + Cx αp) 6= Cx (&0) ∧
[A2] : (s + Cx αc) 6= Cx (&0) ∧
[A3] : (s2 + s ∗ (Cx αc + Cx αp) + Cx αc ∗ Cx αp)

6= Cx (&0)
⇒ bdr_plcnf s αc αp γ1

∗ γ2
∗ γ3

∗ Γ1
∗ Γ2

∗ =
s ∗ Cx Γ1

∗ ∗ Cx γ2
∗ + (Cx αc ∗ Cx Γ1

∗ ∗ Cx γ2
∗ + Cx γ1

∗ ∗ Cx Γ2
∗ ∗ Cx γ3

∗)

(s2 + s ∗ (Cx αc + Cx αp) + Cx αc ∗ Cx αp)

Assumptions A1-A3 provide conditions on various parameters
of the phase lag controller. The conclusion of the above theorem
presents the transfer function of the controller based on its block
diagram representation. The proof of Theorem 9 is based on Defini-
tions 9 and 10 along with some complex arithmetic reasoning. Now,
we formally verify the transfer function, obtained from Theorem 9,
based on the dynamical model as follows:

Theorem 10. `thm ∀s u y αc αp γ1
∗ γ2

∗ γ3
∗ Γ1

∗ Γ2
∗.

[A1] : &0 < αc ∧ [A2] : &0 < αp ∧ [A3] : &0 < Γ1
∗ ∧

[A4] : &0 < Γ2
∗ ∧ [A5] : &0 < γ1

∗ ∧ [A6] : &0 < γ2
∗ ∧

[A7] : &0 < γ3
∗ ∧

[A8] : ∀t. differen_higher_derivat u y t ∧
[A9] : existence_of_laplace_higher_derivat u y ∧
[A10] : zero_ini_condit u y ∧
[A11] : (∀t. differ_equat_plcnf

αc αp γ1
∗ γ2

∗ γ3
∗ Γ1

∗ Γ2
∗ u y t) ∧

[A12] : (laplace_transform u s 6= Cx (&0)) ∧
[A13] :

(
(s2 + s ∗ (Cx αc + Cx αp) + Cx αc ∗ Cx αp) 6= Cx(&0)

)
⇒ laplace_transform y s

laplace_transform u s
=

s ∗ Cx Γ1
∗ ∗ Cx γ2

∗ + (Cx αc ∗ Cx Γ1
∗ ∗ Cx γ2

∗ + Cx γ1
∗ ∗ Cx Γ2

∗ ∗ Cx γ3
∗)

(s2 + s ∗ (Cx αc + Cx αp) + Cx αc ∗ Cx αp)

Assumptions A1-A7 provide the positivity conditions on circuit’s
parameters. Assumptions A8-A9 capture the differentiability and
condition of the existence of the Laplace transform of the higher-
order derivatives of y and e up to order 2 and 1, respectively.
Similarly, Assumption A10 models the zero initial conditions for
y and u. Assumption A11 provides the dynamical behaviour of the
activated expression. Assumptions A12-A13 ensure that the denom-
inator of the transfer function, presented in the conclusion of the
above theorem, provides a valid expression. Finally, the conclusion
presents the transfer function of the phase lag controller. The proof of
the above theorem is done almost automatically using the automatic
tactic TFUN_TAC.

7 Formal Stability Analysis

Stability of a biological system is its capability of returning to
the equilibrium state after suffering from various disturbances [42].
Thus, a stable biological system ensures a stable response to a
bounded input. Stability of the biological systems, such as biolog-
ical circuits and bio-controllers, is based on their transfer functions
that are obtained as a result of analyzing their dynamical behaviour.

Generally, the transfer function of a biological system is mathe-
matically represented as:

Y (s)

U(s)
=

Numer(s)

Denomin(s)
=
pms

m + pm−1s
m−1 + ...+ p0

qnsn + qn−1sn−1 + ...+ q0
(24)

where Y (s) and U(s) provide the Laplace transform of the output
y(t) and input u(t) functions, respectively. Similarly, Numer(s)
and Denomin(s) are complex-valued polynomials modeling the
numerator and denominator of the transfer function. The equation
Denomin(s) = 0 represents the characteristic equation and its
roots are known as poles of the system. The orientation and place-
ment of these poles in the complex plane provides vital information
about the stability of the underlying system. If all poles of a system
are located in the left half of the complex plane then it is said to be
stable system [8].

We model the notion of stability of a biological system as follows:

Definition 25. `def ∀F. is_stable_biosys F =
{s | F s = Cx (&0) ∧ Re s < &0} 6= EMPTY

where is_stable_biosys takes the denominator of the transfer func-
tion corresponding to the dynamics of a biological circuit or con-
troller, i.e., F:C → C, and provides a stable system. Similarly, s:C
captures the root of the characteristic equation. The conjunct F s =
Cx (&0) models the characteristic equation. Similarly, Re s < &0
provides the condition that the poles of the system lie in the left half
of the complex plane.

We formally verify the stability of the autoactivation of the gene
corresponding to the transfer function, given in Equation (19), as the
following HOL Light theorem:

Theorem 11. `thm ∀α γA2

∗ ΓA1

∗. [A:] γA2

∗ ∗ ΓA1

∗ < α
⇒ is_stable_biosys

(λs. s + Cx α − Cx γA2

∗ ∗ Cx ΓA1

∗)

Assumption A provides the necessary condition for the sta-
bility of the autoactivation. The proof of the above theorem is
based on Definition 25 along with some complex arithmetic reason-
ing. Similarly, we formally verified the stability of the aggressive
and repressed expressions of proteins and more details can be
found at [38]. Finally, we formally verified the stability of the
phase lag controller with negative feedback as the following HOL
Light theorem:

Theorem 12. `thm ∀αc αp. [A:] ((&0 < αc + αp ∧
((αc + αp)2 −&4 ∗ (αc ∗ αp) < &0 ∨

(αc + αp)2 −&4 ∗ (αc ∗ αp) = &0)) ∨
(&0 < (αc + αp)2 −&4 ∗ (αc ∗ αp) ∧
(
√

(αc + αp)2 −&4 ∗ (αc ∗ αp) < (αc + αp) ∨
−(αc + αp) <

√
(αc + αp)2 −&4 ∗ (αc ∗ αp))))

⇒ is_stable_biosys
(λs. s2 + s ∗ (Cx αc + Cx αp) + Cx αc ∗ Cx αp)

The formal reasoning for the proof of the above theorem is very
similar to that of Theorem 12 and the details about the verification
can be found at [38]. Due to the undecidable nature of the higher-
order logic, the above-mentioned formal analysis involved manual
interventions and human guidance. However, we developed the tactic
TFUN_TAC [38] to automate the verification of the transfer func-
tions of the biological circuits and their associated controllers. The
details about this tactic and rest of the formalization can be found in
our proof script [38].

8 Discussion

In this paper, we developed a distinguished formal analysis such
that all of the proved theorems are of generic nature, i.e., all of the
functions and variables are universally quantified and hence can be
specialized based on the requirement of analyzing the biological cir-
cuits. On the other hand, in the case of computer based simulations
and numerical methods, we require modeling each case individu-
ally. Furthermore, the inherent correctness of the theorem proving

IET Systems Biology, pp. 1–13
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Table 3 Verification Details for each Theorem

Formalized Theorems Proof Lines Man-hours
Theorem 3 (Transformation from Reaction-based Model to its Equivalent Dynamical Model) 75 8
Lemma 1 (Vector Containing Derivatives of the Concentration of Species) 14 1

2
Lemma 2 (Stoichiometric Matrix) 22 1
Lemma 3 (Flux Vector for the case of n < 0) 17 1
Lemma 4 (Flux Vector for the case of n = 0) 20 1
Theorem 4 (Transfer Function of Activated Expression) 7 1
Theorem 5 (Dynamical Model Implies Transfer Function) 2 1

4
Theorem 6 (Transfer Function of the Protein Expression with Autoactivation) 28 2
Theorem 7 (Dynamical Model Implies Transfer Function) 3 1

4
Theorem 8 (Transfer Function of the Phase Lag Controller) 9 1
Theorem 9 (Transfer Function of Phase Lag Controller in Feedback with a Single Gene) 18 2
Theorem 10 (Dynamical Model Implies Transfer Function) 2 1

4
Theorem 11 (Stable Autoactivation) 27 4
Theorem 12 (Stable Phase Lag Controller with Negative Feedback) 65 9

method confirms that all the needed assumptions are explicitly men-
tioned within the respective theorem statement. Also, because of
the high expressiveness of the higher-order logic, our methodology
allows us to model the dynamics of the biological circuits involv-
ing differential and derivative (Equations (14), (16), (18), (20), (22))
in their true form, whereas, in their corresponding model check-
ing based analysis [20], they are discretized and modeled using
a state-transition system, which compromises the accuracy and
completeness of the corresponding analysis.

The effort spent in the verification of each theorem represented
in the form of proof lines and the man-hours is presented in Table 3.
The verification of Theorems 5, 7, 10 was done almost automatically,
thanks to our automatic tactic TFUN_TAC. Note that the man-hours
are based on the number of code lines in addition to the proof com-
plexity. Therefore, lines number of the proof script do not have a
direct relationship with the man-hours. For instance, the man-hours
for the verification of Lemmas 3 and 4 are identical, while the proof
lines for the former are less than that for the later.

Our proposed approach allows us to perform the reaction kinetic
based analysis of an arbitrary biological system, i.e., a biological
system having i species (reactants and products) and j reactions,
where i and j can take any integer values, i.e., 1, 2, ...,. Similarly, our
proposed approach caters for a generic linear system of order n by
performing the transfer function based analysis of the corresponding
system, where, n = 1, 2, 3, , ...,. Moreover, the verification of the
associated theorems is mainly based on the formal definitions along
with some complex arithmetic reasoning. Therefore, the size of the
formal model does not affect the effort (proof lines and man-hours)
involved in the verification too much. Moreover, the proof-process
of these theorems can be automated by writing some automatic tac-
tics, like TFUN_TAC, which is used to perform the transfer function
based analysis of any system of order n.

9 Conclusion

In this paper, we proposed a higher-order-logic theorem proving
based framework to formally reason about synthetic biology, in
particular, the biological circuits and their associated controllers.
We first formalized the notion of the reaction kinetics, which pro-
vides the reaction-based model of any biological system. We also
formalized the dynamical behaviour, based on reaction-based mod-
els, and the block diagram representations of the biological circuits
and their associated controllers. Finally, we formally verified their
transfer functions based on their dynamical models and their asso-
ciated block diagram representations, and performed their stability
analysis. We illustrated the practical effectiveness of our proposed
approach by formally analyzing the activated and repressed expres-
sions, and autoactivation of the protein, and phase lag and lead
controllers. Our proposed approach focussed on the formal analy-
sis of linear systems only. In future, we aim to extend our work to
formally analyze the non-linear control systems in the context of
biological systems. This idea is based on linearization of the non-
linear models and our proposed framework can be directly used

for their corresponding formal analysis. Moreover, we also plan to
formally verify some more control systems properties of the bio-
logical circuits, such as, performance, robustness and sensitivity etc.
Another future direction is to develop automatic tactics to automate
the formal proofs of theorems describing various properties of the
biological circuits and their associated controllers.
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