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1 Introduction

Critical systems are increasingly being used in almost every aspect of our daily
lives in fields such as avionics, power plants, transportation, electronic voting and
customer accounting systems. Such systems can be broadly classified according to
the aspects of criticality; such as safety critical, mission critical and business critical
systems (Hinchey and Coyle, 2010; Puntambekar, 2008). Therefore, depending on the
severity and criticality of each system, failure consequences may lead to loss of money,
information, and trust to more serious examples that lead to significant environmental
disasters, and even loss of human lives. Thus, formal methods-based analyses have been
integrated in the critical systems design process to reduce costs and ensure their safety
(Becker, 2018; Nyberg et al., 2018; Kamburjan et al., 2018; Ter Beek et al., 2018).
However, the increasing complexity of modern architectures makes the verification of
safety-critical systems a very challenging task, and an active research area.
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Software architecture plays a central role to bridge the gap between system
requirements and implementation. The architecture description of a system is a major
concern during the development process and it refers to the set of standards, techniques
and notations that are commonly used to better represent and analyse software
architectures. Various formalisms have been used to formalise such descriptions and
we think that they can be classified into three main categories: Petri nets (Ding, 2016;
Zhang et al., 2017; Zhu et al., 2018), unified modelling language (UML) diagrams
(Thapaliya et al., 2017; Li et al., 2017a; Ozkaya and Kose, 2018) and architecture
description languages (ADLs) (Li et al., 2017b; Batista et al., 2018; Liu et al., 2019a).
Various mixed approaches have also been proposed in which UML has been combined
with Z (Singh et al., 2016b) and/or transformed into Petri nets (Cortellessa et al., 2018;
Noulamo et al., 2018; Kocı and Janoušek, 2017; Custódio Soares, 2017) to better define
the architecture elements and associate a formal semantics to the software architecture.
Similarly, formal method have been widely used to specify a software architecture and
to prove rigorously that it satisfies the desired structural and behavioural properties
(Taoufik et al., 2017; Giammarco and Giles, 2018; Gerhart et al., 2012; Zhang et al.,
2010).

The main objective of this work is to propose a new generic approach that
goes beyond the architecture description stage and covers all the development stages:
specification, verification and testing for the formal analysis of safety critical systems
software architectures. In particular, the proposed approach combines both model
checking and property-based testing (PBT) techniques. Such combination of techniques
can be motivated by the fact that even if the system model is fully verified with the
model-checking technique, we can never be 100% sure that the corresponding software
system will also be fault-free and/or fault-tolerant. Therefore, the development of critical
systems involves a combination of model checking and PBT approaches (Aoki et al.,
2017; Bucchiarone et al., 2004). While the objective of the verification process is to
ensure completeness and correctness of a model specification, testing process aims to
check the correctness of system implementation properties. In fact, this proposition is
an extension of our previous work (Boucherit et al., 2018a), and then, we use rewriting
logic as a unifying semantic framework in the specification stage to further enlarge the
set of supported formalisms in the modelling stage. In addition, Maude’s model checker
is used to verify the model properties, and finally PBT technique to raise the confidence
level on a given, specific system implementation.

The remainder of this paper is structured as follows: Section 2 presents an
introduction to rewriting logic and software architecture basic concepts, model checking,
and property-based testing. Then, Section 3 presents the proposed approach for the
analysis of critical systems software architectures, which is illustrated on a simple ticket
machine (TM) on Section 4. Section 5 discusses related work in the context of our
contribution, and finally, Section 6 concludes the paper while identifying some future
work.

2 Scientific background

This section provides a brief introduction about the main concepts behind the proposed
approach. These foundations include software architecture basic concepts, rewriting
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logic (Meseguer, 2012; Ölveczky, 2018), model checking, and PBT (Paraskevopoulou
et al., 2015; Hebert, 2019).

2.1 Rewriting logic and architecture description

Maude (Clavel et al., 2007) is an algebraic programming language and system based
on rewriting logic (Meseguer et al., 1992), i.e., a formalism that has been shown to be
able for the specification of concurrent systems. Within this scope, a concurrent system
can be specified by a rewrite theory T , where the dynamic parts of the system are
described by a set of labelled – optionally conditional – rewrite rules (L, R) and its set
of states (structural part) are described by the signature (Σ, E). Maude supports both
equational and rewriting logic computation, and provides a very powerful interpreter
that is able to execute Maude specifications that are organised by modules. Maude has
been extended to deal with some aspects that have not been considered in the former
version. Therefore, real-time Maude (Ölveczky and Meseguer, 2001) is built on top
of the Maude to support the formal specification and analysis of real-time and hybrid
systems. Practically, Maude and rewriting logic have been widely used in many actual
applications and systems analysis (Rosu, 2015; Liu et al., 2019b; Berger et al., 2018;
Meseguer, 2018; Xie et al., 2018).

Due to the influence of architectural decisions on almost all phases of system
development, a large number of ADLs have been introduced to help designers in the
development challenges of safety-critical systems (Feiler et al., 2006; Cuenot et al.,
2007; Mens et al., 2010; Sari and Reuss, 2016; Oquendo, 2016; Kang, 2019). Indeed,
ADLs provide both a conceptual framework and a concrete syntax for characterising
software architectures, and allow a better understanding of the architecture through early
error detection, and quality of service analysis.

Within this research field, rewriting logic has taken its place among the different
formalisms used to specify software architecture, and many attempts have been made
to develop a rewriting-logic-based ADL, such as CBabel (Braga and Sztajnberg, 2004).
Similarly, ADLs have been translated into rewriting logic to benefit from its formal
semantics (Bae et al., 2012; Ölveczky et al., 2010). Moreover, Table 1 summarises
the proposition of Jerad and Barkaoui (2005) for the correspondence between software
architecture concepts and real-time Maude constructs.

Table 1 Concepts correspondence between software architecture and real-time Maude

Software architecture concept Real-time Maude concept

Component Class
Component interface Set of terms with the sort service on top
Component computation Set of rewrite rules
Connector Set of rewrite rules
Types Sorts
Communication events Message exchange
Configuration Term with the sort system on top
Compositionality Sub-class relationship
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2.2 Model checking

Model checking (Clarke et al., 2018) is a formal verification technique that can
automatically determine whether a model M of finite state adheres to a specification
Φ. This principle can be expressed briefly as follows: M |= φ. In fact, M represents
a reduction of the real system model (which is typically too complex, and present
a non-finite number of possible runtime states) that is used in model checking for
automatically determining whether it adheres to its specifications φ1, φ2, . . . , φn, which
are defined formally as propositions in temporal logic (Clarke and Emerson, 1982;
Pnueli, 1981). The process of verification is done automatically through a model checker
that explores (partially or exhaustively) the reachable state space of M and then returns
a positive or negative result about the correctness of the property φ. In the case of a
negative result, the model checker presents a counterexample showing how the predicate
is false.

In this context, Maude features a very powerful linear temporal logic (LTL) model
checker. This LTL model checker was designed with the goal of combining a very
expressive and general-purpose system specification language with ‘on-the-fly’ model
checking, which is one of the most commonly used approaches for model checking.

2.3 Property-based testing

Even if the model of a system has been formally verified and that its specification
has been automatically generated, there is no guarantees that the realised system will
not exhibit any inconsistent behaviour. This is because of the possibility of errors
in the implementation phase. Therefore, 100% certification requires test sets checking
the conformance of the implementation with the specification of the system. Thus,
we propose to use PBT as a complementary technique to eliminate errors that may
appear in the implementation phase. Unlike the more classical manually implemented,
case-by-base specified testing, PBT requires the developer to write universally quantified
expressions that characterise the behaviour of the system under test (SUT) functionality,
i.e., instead of choosing specific input data, data generators are used to define the input
data types, and the expected outcome is specified on the basis of a trusted model (i.e., a
less efficient alternative implementation), an oracle, or by exploring the outcome’s
features.

Thereafter, a PBT testing tool can use data generators (either provided by a data
library or customised by the developer) to randomly produce acceptable input data
to indeed test those universally quantified expressions, running as many concrete
scenarios as desired, and diagnosing each of those scenarios offering counterexamples
for test failures (i.e., violations of the universal quantification).

3 Software architectures analysis approach

The software design process is often viewed as a sequence of phases that transforms a
set of informal specifications into a detailed technical specification that can be used for
the development. All the intermediate phases are characterised by a transformation from
a more abstract description to a more detailed one.
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Our approach for the development of safety-critical systems contemplates the
following phases of software development: modelling, specification, validation, and
testing. We start from an abstract description of the system using the appropriate
formalism and advance in sequence from one phase to the next. Note that our intent
is not to propose a methodological development lifecycle, but a systematic approach
to systems analysis. As such, our proposal could potentially fit any desired project
management cycle.

The following subsections describe the steps of our approach, that covers the
software development process from the abstract specification to the executable
implementation.

3.1 Modelling phase

The goal of this phase is to create the first model of the critical system architecture.
Depending on the studied system, a system may have multiple operational phases,
typically: start-up, initialisation, normal processing, special operations and shutdown.

Generally, the system model is composed of two kinds of descriptions: static and
dynamic. The static description aims to identify the different elements that collectively
form the main architecture of the system and what is the high-level goal of their
cooperation. The static description is completed with a dynamic description that
concerns principally the system elements configuration, that is to say, the definition of
the rules governing the system behaviour in terms of the possible actions.

Once the relevant architectural elements (components, connectors, and data) are
identified, the software architecture model for each important property in the system
is defined by a configuration constrained in their relationships. Then, according to
the property or aspect to be verified, system architecture must be formalised using a
convenient formalism (i.e., ADLs, Petri nets, UML, etc.). This step can be repeated
several times until all the interesting actions in the system are well represented. At the
end of this phase, a model of high quality for each property of interest is created.

3.2 Specification phase

During this second phase, the software architecture descriptions – the corresponding
model for each important system property – obtained in the previous phase are subjected
to rewriting logic-based specification. Such a specification may be prepared directly by
the designer or by using mapping rules from the used formalism to rewriting logic.
Details about formalisms having well-defined mapping rules into rewriting logic can be
found in Ölveczky et al. (2010), Bae et al. (2012), Stehr et al. (2001), Mokhati et al.
(2006), Jerad and Barkaoui (2005) and Boucherit et al. (2018b).

We propose to use Maude for this purpose. The main reason for this is the ease of
specification in Maude, thanks to the flexibility and generality of its underlying rewriting
logic-based formalism that supports the specification of a wide range of concurrency
models. In addition, rewriting logic via the real-time Maude (Ölveczky and Meseguer,
2001) permits the description of software architecture components and system models
directly by means of a single system module specifying a real-time rewrite theory and
allows a choice between discrete and continuous time domains.

Finally, Maude supports modular programming, module importation and
parameterised programming techniques (Goguen et al., 2000) and, thus, permits the
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specification of large and complex systems. These important characteristics give the
designer the ability to easily represent hierarchically-composed architectures, facilitating
the construction of new specifications from already existing ones. Therefore, Maude
specifications become reusable and easier to be understood, debugged and managed
(Clavel et al., 2011).

3.3 Verification phase

Given our focus on critical systems design, the integration of a verification phase is
essential to our approach, in order to ensure the desired safety properties of the system.
This third phase can help the designer to assess that the given system/components are
built correctly, and the choice of architecture fulfills the traced requirements.

In our approach, the verification is performed by using the Maude model checking
tool. This tool is typically based on two specification levels:

1 System specification level, in which the critical system behaviour is formalised
using a rewrite theory (covered by the previous phase of our approach).

2 Property specification level, where two categories of properties have to be
specified (covered in this phase of our approach). The first category is composed
of the set of desired system properties to be verified on the rewrite theory. The
second category is composed of the properties exhibited by the model (i.e., by
design), to be used as a reference in the process of verification by the model
checking tool.

The result of the verification process may lead to a positive outcome, meaning that the
model of the system satisfies the desired requirements, or to a counterexample, thus
reporting any found inconsistencies. Here, a counterexample is an explanation, at the
model level that demonstrates how a non-allowed state is reached.

In addition, our approach allows combining the Maude’s model checker with the
Maude’s reachability tool (if necessary) to detect the existence of critical states in the
system. The set of these critical states is generally identified by the experts in the field
of study. The main advantage of complementing the use of the Maude model-checking
tool with the reachability tool is to confirm the existence/absence of some critical states
starting from pre-defined initial states. In fact, this possibility minimises the time and
state space to be explored and allows us to better understand and analyse the system.

Finally, in the case of infinite-state systems, these techniques are consequently only
semi-decidable, but they can still uncover many errors. Maude supports such model
checking analyses with a library of search and model checking strategies, including
model checking for a useful class of timed temporal logic formulas. Furthermore, due
to the reflective nature of its logic and its implementation, such a library can be easily
extended by the user with new model checking strategies (Ölveczky, 2007; Rubio et al.,
2018).

3.4 Testing phase

The main interest of this phase is to ensure the correctness and quality of the proposed
implementation (pre-implementation) before system realisation. On the other hand, the
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more complex a software system is, the more difficult (or even unfeasible) it is to verify
it formally, since there may be properties which simply cannot be represented using
LTL, or that would require an unacceptable effort to define. To cater for such cases,
we advocate to apply the testing phase to check those properties for which we have no
other alternative left in the verification phase. Contrary to the formal verification and
model checking, testing offers no absolute guarantees, though. This is why we propose
to use PBT as a strategy as a last resort in our testing phase.

Figure 1 General description of our proposal

Following this approach, we define all desired properties as universally quantified
expressions, and devote as much time as available to automatically generate, run, and
evaluate them as test cases. Here we will take advantage of QuickCheck’s capabilities
to produce shunk (i.e., simplified) counterexamples when a specific test case fails, to
show how that the realisation of the system violates a given property. In this case, a
counterexample is an execution trace that leads to the falsification of the said property.



Towards a hybrid formal analysis technique 9

At the end of this section, Figure 1 displays an overview of all the stages of our
approach.

4 Case study

4.1 General system description

In this section, a simple TM – that delivers various items to users once a special identity
card is pressed into the machine – is presented to show the usefulness of the proposed
approach. In fact, TM is a type of automated machine (vending machine), which has
been often treated as a critical system (Carvalho and Meira, 2019; Schneidermeier et al.,
2013; Poppleton, 2007). The proposed TM is to be used by participants in two training
workshops that are held on the same date and location. Since the workshops are different
in scope and price, there is a recurrent need for two types of tickets: for meals, scientific
trips, toolkits and these two types of tickets can be delivered by the TM. The machine
is programmed to deliver one ticket at each time of use (for instance, morning, coffee
break, noon and at the end of day). The participant’s ticket type is determined on
the basis of their identity card that is provided during the registration procedure. For
instance, in the morning, the TM dispenses toolkit tickets (to take the material bag for
a workshop). After some time, the TM delivers tickets for the coffee break. At noon,
meal tickets are delivered. At the end of the day, the participants take tickets identifying
their bus for their scientific trips.

Figure 2 The UML activity diagram of our case study TM

In our case, TM has to be programmed to avoid money loss, avoid any malfunctions in
conference management as well as the direction of the participants.
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Figure 3 The UML state diagrams of TM’s composite states

(a) (b)

Figure 2 shows a simple activity diagram describing the functionality of the considered
TM. First, a participant needs to enter their identity card. In case of failure to
identify the person, the participant’s card is rejected. If the card is validated, the
TM automatically determines the participant type and then prints the corresponding
ticket. States Validate card and Check cardtype are both composite states detailed
Figure 3.

In a real scenario, a simple algorithm based on hamming code to detect code error
and/or a white-list could be used for such states.

4.2 System and properties specifications

4.2.1 System specification level

The rewrite theory specifying the activity diagram of Figure 2 is given as follows:

fmod TMACHINE is
protecting BOOL .
sorts Ticket Participant Machine Marking .
subsorts Participant Machine Ticket < Marking .
sorts InternalState Action .
ops ready validating checking printing rejecting : -> Action .
ops free busy : -> InternalState .
sorts Attribute AttributeSet .
subsort Attribute < AttributeSet .
op none : -> AttributeSet [ctor] .
op _,_ : AttributeSet AttributeSet -> AttributeSet [ctor assoc comm id: none] .
sorts TTicket TCode PName .
ops T1 T2 : -> TTicket .
ops npal pal : -> TCode .
ops P1 P2 P3 P4 : -> PName .
op none : -> Marking .
op ticket :_ : TTicket -> Attribute [ctor gather(&)] .
op [_] : Attribute -> Ticket [ctor] .
op TM :_ : InternalState -> Attribute [ctor gather(&)] .
op TMState :_ : Action -> Attribute [ctor gather(&)] .
op <_> : AttributeSet -> Machine [ctor] .
op Code :_ : TCode -> Attribute [ctor gather(&)] .
op Inserted :_ : Bool -> Attribute [ctor gather(&)] .
op Served :_ : Bool -> Attribute [ctor gather(&)] .
op <_|_> : PName AttributeSet -> Participant [ctor] .
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op __ : Marking Marking -> Marking [ctor assoc comm id: none].
endfm

mod TMACHINE-DIAGRAM is
inc TMACHINE .
op initial : -> Marking .
op init-machine : -> Marking .
op init-participant : -> Marking .
eq init-machine = < TM : free,TMState : ready > .
eq init-participant = < P1 | Code : npal,Inserted : false,Served : false >

< P2 | Code : pal,Inserted : false,Served : false > < P3 | Code : npal,
Inserted : false,Served : false > < P4 | Code : pal,Inserted : false,Served
: false > .

eq initial = init-machine init-participant .

var P : PName .
var C : TCode .
var T : TTicket .

rl[add-new-P] : < P | Code : C,Inserted : false,Served : true > => < P | Code :
C,Inserted : false,Served : false > .

rl[P-use-TM] : < TM : free,TMState : ready > < P | Code : C,Inserted : false,
Served : false > => < P | Code : C,Inserted : true,Served : false >
< TM : busy,TMState : validating > .

rl[TM-validating] : < TM : busy,TMState : validating > < P | Code : C,Inserted :
true,Served : false > => if ((C == pal) or (C == npal)) then (< TM :
busy,TMState : checking > < P | Code : C,Inserted : true,Served :
false >) else ( < TM : busy,TMState : rejecting > < P | Code : C,
Inserted : false,Served : false > ) fi .

rl[reject-TM-ready] : < TM : busy,TMState : rejecting > => < TM : free,TMState :
ready > .

rl[TM-printing] : < TM : busy,TMState : checking > < P | Code : C,Inserted : true,
Served : false > => < TM : busy,TMState : printing > < P | Code : C,
Inserted : true,Served : true > if (C == pal) then [ ticket : T1 ]
else [ ticket : T2 ] fi .

rl[P-taking-Ticket] : < TM : busy,TMState : printing > < P | Code : C,Inserted :
true,Served : true > [ ticket : T ] => < P | Code : C,Inserted :
false,Served : true > < TM : busy,TMState : rejecting > .

endm

4.2.2 Properties specification level

In order to pass to the verification stage, we have to prepare two additional modules.
The first module TMACHINE_PREDS must contain the set of properties that are assumed
to be verified by Maude LTL model-checker. Such properties may also be used in the
second module TM_CHECK to express the set of relevant properties to be checked in the
system.

The corresponding modules for our UML activity diagram are given as follows:

mod TMACHINE_PREDS is
protecting TMACHINE-DIAGRAM .
including SATISFACTION .
subsort Marking < State .
ops Machine-busy Machine-free : -> Prop .
ops New-Participant(_) Participant-served(_) : PName -> Prop .
var A : Marking . var x : Action .
var P : PName . var C : TCode .
*** ---------- SOME IMPORTANT PROPERTIES OF THE STUDIED SYSTEM -----------
eq < TM : busy,TMState : x > A |= Machine-busy = true .
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eq < TM : free,TMState : x > A |= Machine-free = true .
eq < P | Code : C,Inserted : true,Served : false > A |= New-Participant(P) = true .
eq < P | Code : C,Inserted : true,Served : true > A |= Participant-served(P) = true .
endm
mod TM-CHECK is
inc TMACHINE_PREDS .
inc MODEL-CHECKER .
inc LTL-SIMPLIFIER .
op initial : -> Marking .
op init-machine : -> Marking .
op init-participant : -> Marking .
eq init-machine = < TM : free,TMState : ready > .
eq init-participant = < P1 | Code : npal,Inserted : false,Served : false > < P2 |
Code : pal,Inserted : false,Served : false > < P3 | Code : npal,Inserted : false,
Served : false > < P4 | Code : pal,Inserted : false,Served : false > .
eq initial = init-machine init-participant .
ops no-deadlock : -> Prop .
op serving-participant(_) : PName -> Prop .
var P : PName .
eq serving-participant(P) = ([](New-Participant(P) -> <>(Participant-served(P)))) .
eq no-deadlock = [] ((Machine-free -> <> (Machine-busy)) /\ (Machine-busy -> <>
(Machine-free))) .

endm

4.2.3 Verification

The following two properties are expressed in the module TM_CHECK and are verified
using the Maude LTL model checker.

1 System activity and deadlock absence: This property ensures that the system is
always functional and never reaches a deadlock state. This can be done by
checking that whenever the TM is busy (resp., free) it is eventually followed by a
free (resp., busy) state to ensure that the TM is always active. This property is
expressed in LTL as follows:

no-deadlock = [] ((Machine-free -> <> (Machine-busy)) /\ (Machine-busy -> <>
(Machine-free)))

After verification, we have obtained the following positive results as follows:

Maude> reduce in TM-CHECK : modelCheck(initial, no-deadlock) .
rewrites: 855 in 42175075451ms cpu (15ms real) (~ rewrites/second)
result Bool: true

2 Serving participants: This property ensures that whenever a participant is present
with a valid card and their card is inserted, they will be surely served, either by a
ticket of type 1 or type 2. This property is expressed as follows:

serving-participant(P) = ([](New-Participant(P) -> <>(Participant-served(P))))

The checking of such property has confirmed their correctness in the proposed
activity diagram as follows:
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Maude> reduce in TM-CHECK : modelCheck(initial, serving-participant(P)) .
rewrites: 666 in 42051663328ms cpu (0ms real) (~ rewrites/second)
result Bool: true

4.2.4 Testing

Although that we have used a well-known formal verification technique in the previous
phase, there are still other important properties that are related to the implementation
and could not be verified.

1 Card validation algorithm

The first composite state Validate card given in Figure 3(a) is composed of two
steps. In the first step, we assume that a participant card contains a bar code with
14 digits where the addition of digits in Positions 1, 2, 4 and 8 (starting from
right to left) equals to 20. Secondly, the card codes of the registered participants
are inserted in a list into the memory of the machine for each service and when a
valid participant card is used, it is automatically deleted from this list and it will
not be valid again for such time of use.

For the sake of simplicity, we will show here a sample implementation of the first
step, although our PBT model below does include both steps. The proposed C
function for checking the validity of the card is given as follows:

int Checking_Validity(long Code)
{ int digit, t, pos = 0,count = 0, ad = 0;

while(Code != 0)
{

t = Code; Code /= 10;
digit = t-Code*10;
pos = ++count ;
if(pos==1 || pos==2 || pos==4 || pos==8) ad += digit;

}
if (ad == 20) return (0); else return (-1);

}

2 Card classification algorithm

The second composite state Check card type given in Figure 3(b) uses a simple
algorithm that checks if a valid code is palindrome or not. The corresponding C
function for such algorithm is given as follows:

int Checking_Palindrome(long Code)
{ char tabcode[]; char reversed_code[];
int i;
itoa(Code,tabcode,10); // convert Code into string
int h = strlen(tabcode); // getting tabcode length
for (i = h - 1; i >= 0 ; i--)
{
reversed_code[h - 1 - i] = tabcode[i]; // inverting tabcode characters
}
(strcmp(tabcode,reversed_code) == 0) ? return 0 : return 1;

}
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Now, the more common testing activities would write specific test cases for these two C
functions, in which a few developer-selected inputs are used. The appropriate selection
of representative cases and corner cases entirely depends on the expertise and ability of
the developer. Also, these functionalities are usually tested in isolation (i.e., using unit
tests) and the presence of integration tests where the same code is used for testing both
algorithms, will likely depend on the complexity of the software, time available, and
again, developer expertise.

Instead, we advocate the use of PBT, which adds formalism and increases the
expressive power of our testing simultaneously. Using PBT, we describe one general
property to test conformity of the implementation with the specification in Figure 2:

prop_ticket_machine_prop() ->
?FORALL(Cmds, commands(ticket_machine_spec),
begin

{_History, _FinalState, Result} = run_commands(Cmds),
Result == ok

end).

This property is a universally-quantified declarative implementation stating that all
commands (in PBT terminology, actual calls to the implementation of source code,
like the algorithm implementations above) should run so that the final result of the
considered execution is ok (that is to say, free of errors). In other words, given that we
specify which calls we want to make, the PBT tool will generate sequence of invocations
to be used as test cases, run them, and evaluate them. Sequences of invocations are
generated according to both data generation specification and command preconditions.
Then, their evaluation is based on both actual call execution and command postcondition
checking.

In the TM case study, we have two commands: validate_card (which
invokes the Checking_Validity function), and check_card_type (that
invokes Checking_Palindrome). These two commands are implemented in the
ticket_machine_spec file referred by our general property. The implementation of
the validate_card commands features the following key parts:

%% Argument generator
validate_card_args(_S) ->

[oneof([long(20), % a card number is either any 20-digit long
% or a 20-digit long which digits 1, 2, 4 and 8 sum up 20

?LET({D1, D2, D3, D4}, digits_that_sum_up_20(),
to_long([D1, D2, digit(), D3, digit(), digit(), digit(), D4,

digit(), digit(), digit(), digit(), digit(), digit()]))])].

digits_that_sum_up_20() ->
?SUCHTHAT({D1, D2, D3, D4},

{digit(), digit(), digit(), digit()}
D1 + D2 + D3 + D4 == 20.)

While we could use only randomly generated 20-digit long inputs as card number, the
chances of getting a valid card (one where the sum of the digits in Positions 1, 2, 4
and 8 is 20) would be significantly low. This would lead to a lot of non-significant
tests. So instead, we force that for each test case, one of a totally random, or a
random-but-valid-by-construction card number is used. This way our automatic testing
will feature both positive and negative tests.
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Next, we see that the precondition for the validate_card is always true (provided
we have generated a _Card number), and that we invoke the actual implementation
under test when we define the command itself:

%% Precondition for validate_card
validate_card_pre(_S, [_Card]) ->

true.

%% Invokes the actual operation on the SUT
validate_card(Card) ->

call_cnode('Checking_Validity', Card).

%% Postcondition for validate_card
validate_card_post(_S, [Card], 0) ->

is_valid_card(Card);
validate_card_post(_S, [Card], -1) ->

not is_valid_card(Card).

is_valid_card({P1,P2,_,P4,_,_,_,P8,_,_,_,_,_,_}) ->
(P1+P2+P4+P8 == 20).

We now observe how the evaluation of this command is performed. A true postcondition
marks a passed test case, which can be because the Card is a valid card and the
implementation returns 0, or because it is not and the implementation, consequently,
returns –1. Any mismatch to this expectation would mean a failure in the software has
been detected.

Respectively, the implementation of the check_card_type commands looks as
shown below. The most notable differences are the absence of an argument generator,
since a check_card_type command has to be always preceded by a validate_card
command, which already generates a Card. Instead, we do have a precondition, which
also checks that the card has not been already used (i.e., has not been blacklisted yet).

%% Precondition for check_card_type
check_card_type_pre([], _) -> % empty list means we did not pass validate_card

false; % for any cards yet
check_card_type_pre(ListOfCards, [_Card]) ->

not list:member(Card, ListOfCards).

%% Argument generator just relays the card already in use
check_card_type_args([Card]) ->

[Card].

%% Invokes the actual operation on the SUT
check_card_type(Card) ->

call_cnode('Checking_Palindrome', Card).

%% Postcondition for check_card_type
check_card_type_post(_S, [Card], 0) ->

is_palindrome(Card);
check_card_type_post(_S, [Card], 1) ->

not is_palindrome(Card).

is_palindrome(Card) ->
CardAsList = digits_to_list(Card),
CardAsList == lists:reverse(CardAsList).

As for the postcondition, again we check the coherence between the implementation’s
responses (0 or 1) with the corresponding classification of the card number as



16 A. Boucherit et al.

palindrome or not. Figure 4 shows the successful execution of 100,000 different test
cases.

Figure 4 PBT execution report

Interesting data reported by the QuickCheck tool about these test cases is a maximum
test sequence length of 203 (i.e., different cards used in the same test, that would account
for number of workshop attendees), an average of 15.6, and a total of more than 1.5
million of invocations to the actual implementations. Very few testing techniques can
compete, with the modest effort involved in describing the PBT model (commands,
preconditions, postconditions, data generators), with this sort of testing power.

5 Related work

Safety-critical systems have to be developed carefully to prevent loss of life and
resources due to system failures. Therefore, specification, verification, validation, and
testing are key concepts in the process of their development. In this section, we compare
the foundations, advantages and contributions of our approach for the formal analysis
of critical systems software architecture with other related research.

Regarding the use of formal methods for the development of critical systems, a
substantial amount of work has been done that can be categorised according to the
modelling formalism, the specification language as well as the verification and testing
techniques used.

On the modelling stage, different approaches have been presented to facilitate the
design of critical systems software architectures using UML (Weissnegger et al., 2015,
2016; Kocataş et al., 2016) and Petri nets (Song and Schnieder, 2018; Wu and Zheng,
2018; Singh and Singh, 2019). However, UML lacks a precise semantics which is
a serious drawback of UML-based techniques to ensure and guarantee the reliability
of the system. Therefore, some works on the transformation (resp, the combination)
of UML diagrams into (resp, with) Petri nets (Bennama and Bouabana-Tebibel, 2016;
Ding et al., 2016; Meghzili et al., 2017; Shapiro et al., 2002), and other rigorous
formalisms (Singh et al., 2016a; Vistbakka and Troubitsyna, 2018; Abbas et al., 2018;
Ozkaya and Kose, 2018) have been proposed to fill the gaps of UML, especially in
the case of real-time systems specification. On the other hand, Petri nets still generally
have some limitations (Ballarini et al., 2011; Kolagari, 2002), as they are combined
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or transformed into more formal languages such as B machines (Boudi et al., 2015a,
2015b), Z (Jaidka et al., 2017) as well as they are verified with many model checkers
(Chaichompoo et al., 2017; Wolf, 2018; Nigro et al., 2019) for better analysis quality
results. In addition, many ADLs have been introduced in the last decades to define
and model system architecture prior to system implementation, and can also be used to
analyse software architectures. Nevertheless, most of them are informal, domain specific
and do not support behavioural descriptions or dynamic verification of architectural
properties (De Sanctis et al., 2017; Haider et al., 2018). Therefore, many authors aimed
to transform ADLs into more formal formalisms (Blouin and Giese, 2016; Han and
Wang, 2016; Mkaouar et al., 2015; Franco et al., 2016) to cover these limitations. The
common deficiency of all these works is that they are restricted by utilising just a single
formalism at the modelling stage, which limits their utilisation. Therefore, we advocate
using rewriting logic for the specification stage to offer a generic approach allowing the
use of multi-formalisms at the modelling stage. For instance, rewriting logic has shown
its ability and adequateness both as a semantic framework for software architecture
description (Jerad et al., 2007; Bruni, 2009; Belala et al., 2010), and as a meta-logic
in which many software architecture description formalisms can be represented or
translated such as UML diagrams (Durán et al., 2014; Chama et al., 2013; Djaoui et al.,
2018a, 2018b), Petri nets (Boucherit et al., 2018b) and ADLs (Ölveczky et al., 2010;
Bae et al., 2012). In addition, the use of Real-Time Maude in this context has proved
to be very advantageous compared to well-known ADLs (Jerad et al., 2008) and that
is why some authors have proposed rewriting logic-based ADLs (Braga and Sztajnberg,
2004; Garlan et al., 2009; Rademaker et al., 2005; Bouanaka and Belala, 2008; Smaali
et al., 2013).

As compared to other verification techniques, model checking is a well-established
technique that has been widely used for automatically verifying safety-critical systems
(Meng, 2019; Ray et al., 2019; Parquier et al., 2016; Ammar et al., 2016) and allowing
designers to determine whether or not a system model meets its specification. In
order to deal with the state-space explosion problem, the Maude LTL model checker
leverages upon both the explicit-state verification and the on-the-fly algorithms category.
Therefore, its performance is comparable to that of others well-known tools such as
SPIN, UPPAAL and Kronos (Eker et al., 2003; Ölveczky and Meseguer, 2007). Besides
being able to use and extends the LTL model-checker with user defined strategies
(see Subsection 3.3) to verify the model properties and cater the space-state problem,
Maude also provides several analysis tools, including an inductive theorem prover (ITP)
(Hendrix et al., 2008; Clavel et al., 2006), timed rewriting for simulation purposes, timed
search and time-bounded linear temporal logic model checking as all-in-one toolkit to
be used for the verification stage.

Last but not the least, testing is often a mandatory step in the development process
of safety-critical systems as it is not possible to absolutely ensure the correctness of the
implemented system even if the system model has been formally verified and that its
specification has been automatically generated, because of the possibility of errors in its
implementation. Thus, we advocate the use of PBT for the testing stage as it has been
proved to be an effective automatic technique – based on random generation of data –
to reveal implementation errors for safety-critical systems (Fredlund et al., 2015; Santos
et al., 2018). Similarly, PBT has also been previously combined with model checking
such as in Aichernig and Schumi (2017, 2016). However, these works differ from our
approach since both techniques have been defined in a specific programming language
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and/or used on specific industrial applications such as in Bentahar and Dssouli (2018)
and Enoiu et al. (2016).

Consequently, we can say that we have proposed a generic approach that covers all
system development life-cycle stages, in which we can capitalise the complementary
nature of various formalisms. In doing so, we have used rewriting logic as a unifying
semantic framework in the specification stage. The Maude’s LTL model checking tool
is used to check model properties, and finally QuickCheck’s PBT at the implementation
level, to reduce costs, save time and back up the confidence on a given, specific system
realisation.

6 Conclusions and future work

The main goal of the present work is to provide a generic approach for the formal
analysis of critical systems software architecture that supports multi formalisms and
goes beyond the architecture description stage to cover all the development stages:
specification, verification and testing for the formal analysis of safety critical systems
software architectures. To do so, we start the process of development and analysis by
using one of the most appropriate formalisms to describe the software architecture of the
studied system, and translate it into rewriting logic. Then, we have proposed to use the
Maude model-checker to check the absence of any abnormal behaviour in the proposed
architecture of the studied system. In addition, by using QuickCheck specifications and
PBT, we intend to verify the sustained compliance of actual proposed code (algorithm)
before (or during) its real implementation.

A specific objective of our future work is to develop a complete framework which
allows automatic translation of the software architecture models into the rewriting logic
and properties to avoid human errors in handling Maude specifications, as well as
QuickCheck properties.
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