
Quantitative Analysis of State-of-the-Art
Synchronizers: Clock Domain Crossing Perspective

N. Sharif, N. Ramzan, F. K. Lodhi and O. Hasan
School of Electrical Engineering and Computer Science

National University of Sciences and Technology (NUST)
Islamabad, Pakistan

{naeha.sharif, nadra.ramzan, faiq.khalid, osman.hasan}
@seecs.nust.edu.pk

S. R. Hasan
Department of Electrical Engineering

École Polytechnique de Montréal
Montréal, Canada

hasan@grm.polymtl.ca

Abstract- Reliable transferring of data from one clock domain to
another requires synchronization. Therefore, synchronizers play
an important role in clock domain crossing (CDC). But despite
their wide applications, there is no standard quantitative metric
available to analyze various synchronizer configurations on
common grounds. To overcome this limitation, this paper
presents a comparison of three basic and widely used
synchronizers. Latency and power consumption metric are
measured for level, edge-detecting and pulse generating
synchronizers. Furthermore, effects of these synchronizers are
studied when applied to some commonly used asynchronous
handshaking protocols under 90nm CMOS technology.

Keywords-Synchronizers, Handshaking Protocol, System on
chip (SOC)

I. INTRODUCTION
Recent microprocessors and graphical processing units

contain several clock domains within a chip [1, 2]. Modules in
different clock domains need to communicate with each other
and hence require crossing the clock domain, a phenomenon
that is commonly called as clock domain crossing (CDC).

When a signal crosses the clock domains it is treated
asynchronously in the receiving domain. Such a signal is called
mutually asynchronous signal and for a system to work
properly this signal requires safe synchronization. In modern
deep sub-micron (DSM) technologies; factors like clock skew
and jitter due to process, voltage and temperature (PVT)
variations [3] adversely affect the timing behavior of signals. In
the case of high frequency applications, if not treated properly,
these timing uncertainties in mutually asynchronous signals
can cause malfunctioning of the system. Therefore, recently
extensive research is underway for reliable design protocols to
solve this problem of synchronization.

Several synchronizer solutions have been proposed to solve
these issues. Sarwary et al. [4] Presented an enable based
synchronizer. The protocol assumes the data to be stable when
enable is asserted. The basic synchronizer in this protocol is the
traditional two flop synchronizer. This approach addresses
issues such as metastability convergence. Jabulani et al. [5]
proposed a synchronization scheme for network-on-chip
(NOC) systems. The scheme consists of FIFO designs [6] that
interface system on chip modules running at different
frequencies. The authors have compared their protocol to the

one proposed by Chelcea and Nowick [7]. They showed that
their architecture has low latency and power consumption.
Ginosar and Semiat in [8] have given an analysis of a standard
two flop synchronizer and some pleisochronous synchronizers.
Each of these CDC schemes is implemented and analyzed
using different design constraints and technologies. Thus,
identifying the most efficient synchronizer for a given system
is a very challenging task, if not impossible. Usually the main
tools available to the designer for selecting a synchronizer are
intuition and prior experience. Therefore, there is a dire need to
quantitatively analyze the context and develop the parameters
of interests so that designers can evaluate the available CDC
methodologies on common ground and identify the most
efficient contextual based option. In [9] Ginosar also reflected
upon the same idea. However in general these studies focus on
the design of synchronizer and the contextual based
implementation details are left unexplored.

In order to overcome the above mentioned synchronizer
selection problems, this paper presents a thorough analysis of
three of the widely used synchronizers. The three
configurations include level synchronizer, edge-detecting
synchronizer and pulse generating synchronizer. Initially, in
this paper some parameters of interest for designers are
identified, such as absolute latency, clock cycle latency, and
relative frequency of the communicating modules and overall
power consumption of the system for a reasonable pre-
established criterion. The comparison is made using same
parameters and technology for all synchronizers. The design is
done using the 90nm CMOS technology in CADENCE [10],
which is an efficient IC designing tool. A comprehensive
analysis is performed on the implementation of these
synchronizers for full handshaking and partial handshaking
asynchronous protocols. To the best of our knowledge, this is
a premier work in contextual based synchronizer suitability
analysis.

The rest of the paper is organized as follows: Section II
explains the three synchronizers that are analyzed. Later,
Section III discusses the hardware implementation of the
analyzed synchronizers. In section IV, experimental results
performed using 90nm processing technology are presented
followed by some discussions in Section V. Finally, section VI
concludes the paper.

II. STATE OF ART SYNCHRONIZERS
Synchronization is a process of imposing or identifying an

ordering of event on the signal lines [11]. The purpose of
synchronization is to prevent metastability in logic flow.
Traditional synchronizers comprise of flip-flops that are
combined together without any combinational logic between
them. It is also worth mentioning that for proper
synchronization the signal from flip-flop in one clock domain
should enter the flip-flop in the second clock domain without
passing through a combinational logic. Fulfillment of this
condition is necessary because the first stage of the
synchronizer is sensitive to glitches and can force it to give an
incorrect output to rest of the design.

The synchronizers can be broadly classified into three main
categories; level, edge-detecting and pulse. Other designs also
exit but these synchronizers fulfill most of the requirements,
designer’s experience. This paper analyzes and compares these
three types of synchronizers.

A. Level Synchronizer
The level synchronizer [12] consists of two flip-flops

connected back to back as shown in Fig. 1. It is also known as
two-flop synchronizer and is the basic component of all
synchronizers. The mutually asynchronous signal may fail to
meet the setup or hold time requirement of the first flip-flop in
the receiver domain causing it to fall into a metastable state. If
this synchronizer is made up of only one flip flop instead of
two then due to the occurrence of metastable output the
receiving domain would be vulnerable to the downstream logic
from the metastable state of the first flip flop. In contrary, the
two flip flop configuration allows the synchronizer one clock
cycle duration to resolve the metastability

Figure 1. Block Diagram of Level Synchronizer

In a level synchronizer, signal crossing clock domain stays
high and low for more than two clock cycles in the new
domain. It is requisite for the circuit that signal changes its
state from valid to invalid before becoming valid again. This
condition is necessary because each time the signal changes its
state from invalid to valid state the receiving circuit considers it
as an event. It does not depend on how long the signal remains
valid.

B. Edge-detecting Synchronizer
The second type of synchronizer is the edge-detecting

synchronizer [12] (Fig. 2). It consists of a level synchronizer
and an additional flip-flop at its output. The inverted output of
this added flip flop and the output of the level synchronizer are
ANDed as shown in Fig. 2. The purpose of this synchronizer is
to detect the rising edge of the input and generate a clock wide

active high pulse at the output. The circuit can be modified to
detect the falling edge of the input. It can be done by switching
the inverter on the AND gate. If a NAND gate is used instead
of an AND gate then the circuit generates an active low pulse.

Figure 2. Block Diagram of Edge-detecting Synchronizer

C. Pulse Generating Synchronizer
The third type of synchronizer discussed here is the pulse

synchronizer [12] (Fig. 3). The input of a pulse synchronizer is
a single clock wide pulse, which triggers the toggle circuit in
the originating domain. The toggle circuit changes its output
state whenever it receives an input signal. The output of the
toggle circuit passes through the level synchronizer and acts as
an input to the XOR gate. The second input of the XOR gate is
a one clock cycle delayed version of the output of the level
synchronizer.

Figure 3. Block Diagram of Pulse Generating Synchronizer

III. HARDWARE IMPLEMENTATION USING HANDSHAKING
PROTOCOL

This section explains the hardware implementation of the
above mentioned synchronizers. Fig. 4 shows a general block
diagram of two modules that are “Receiver module” and
“Sender Module”. The two modules exist in different clock
domains and communicate with each other through
synchronizers.

Figure 4. Synchroniztion with Handshaking Protocol

The design shown in Fig. 4 consists of two phases;
synchronization phase and data transmission phase. A state
machine which is part of the design (not shown in the figure)

decides the phase. In the synchronization phase the
synchronizers with the help of a handshaking protocol,
synchronize the signals crossing the clock domains.
Handshaking allows circuits to communicate effectively when
their response time is unpredictable. On the completion of the
synchronization process the data is transmitted from one
domain to the other during the data transmission phase.

We used three versions of handshaking protocols; a full
handshake and two partial handshake techniques.

A. Full Handshake
In the full hand shake protocol, modules wait for each

other’s acknowledgement before inserting or removing their
respective signals. The state diagram for respective handshake
is shown in Fig. 5.

Figure 5. State diagram of Full Handshake Protocol

The sender and receiver module communicate with each
other using R (request) and ACK (acknowledgement) signals.
At first the sender module asserts a request which is detected
by the receiver module. After verifying that the signal is valid
the receiver module asserts an acknowledgement signal. The
sender module performing similar verification then drops its
request. It does not assert a new request until the receiver
module drops it acknowledgement signal.

This type of handshake uses level synchronizers as depicted
in (Fig. 6). It is used when the receiver module needs to inform
the sender module that the request is being processed. A
requirement of this protocol is that the sender module does not
send a request signal unless it gets an invalid acknowledgement
signal.

Figure 6. Hardware Implementation of Full Handshake Protocol

B. Partial Handshake I
The second type of protocol is the partial handshake. In this

type of handshake, the sender and receiver modules do not wait

for each other before they drop their respective signals and
move on with the handshaking process (Fig. 7).

The sender module asserts its request signal as an active
high level, and the receiver module acknowledges it with a
single clock wide pulse. In this case, the receiver is not
concerned when the sender will drop a request. On the other
hand, to make the protocol work properly, the sender needs to
drop the request signal for at least one clock cycle as otherwise
the receiver cannot differentiate between a new and a preceding
request.

Figure 7. State diagram of Partial Handshake I Protocol

For this type of handshake a pulse synchronizer is used at
the sender’s end while a level synchronizer is used at the
receiver’s end (Fig. 8).

Figure 8. Hardware Implementation of Partial Handshake I Protocol

C. Partial Handshake II
A second type of partial handshake scheme can also be

used. In this protocol the sender asserts its request signal
consisting of a single clock wide pulse, which is acknowledged
by the receiver with a single clock wide pulse (Fig. 9).

Figure 9. State diagram of Partial Handshake II Protocol

This type of handshake uses pulse synchronizer both at the
sender and receiver ends (Fig. 10). But if one module has a
clock twice as faster than the other then it can use an edge
detecting synchronizer instead.

Figure 10. Hardware Implementation of Partial Handshake II Protocol

IV. EXPERIMENTAL RESULTS
State machine implementation of the three synchronizers;

level, edge-detecting and pulse using different handshaking
protocols have been shown in Figures 5, 7 and 9, respectively.
This section summarizes the results obtained after analyzing
and comparing these synchronizers.

All the electrical simulations are performed using 90nm
CMOS IHP technology. For gate level implementation, pass
transistor logic has been used. The flip-flop in each
synchronizer is a true single phase clock (TSPC) DFF. To
eliminate ideal characteristics of the pulse sources, buffers are
connected at the inputs and a capacitive load of 900pF has been
added at the output to mimic as standard driven load. The
comparison among the synchronizers has been done based on
the latency and power consumption.

A. Latency
Latency is the measure of time delay in a system. In case of

synchronizers, it refers to the time taken by a synchronizer to
synchronize the signal and provide a valid output [15]. In our
analysis the latency of each synchronizer is calculated as the
time difference between the point at which the synchronizer
samples the data and the point where the sampled data appears
at its output. It is represented as the duration between points A
and B, in Fig. 11. This figure shows the simulation results for a
level synchronizer. The synchronizer clock is operating at a
frequency of 1.5GHz whilst the maximum input data rate (data-
in) of once every three clock cycle is assumed. Absolute
latency of about approximately 711ps is obtained between
point A and B in Fig. 11, which is slightly more than one clock
cycle.

Similarly, we measured the latency for the edge-detecting
and pulse generating synchronizers, keeping with the same
operating frequency and input data rate. It should be noted that
the data is operating at a much slower frequency. The results
are summarized in Table 1.

For further analysis, we implemented the three widely used
handshaking protocols, mentioned in section III, using above
synchronizers and FSM’s. The synchronizers are chosen
depending on the type of handshaking protocol.

Figure 11. Simulation Results for latency calculation of a level synchronizer

Fig. 12 shows the simulation result for the full handshake
protocol. Both receiver and sender modules are operating at the
same frequency of 1.5GHz. The active high data signal
indicates that the data is present at the sender module. Using

the simulation waveform, the latency is calculated as the time
difference between the Request sent and ACK received by the
sender. Similar analysis was done for the other two protocols
as well and the results are given in Table 2.

Figure 12. Simulation Results for latency calculation of a Full Hanshake Protocol

TABLE I. LATENCY OF DIFFERENT TYPES SYNCHRONIZERS WITHOUT
PROTOCOL IMPLEMENTATION

Latency of the Synchronizers without protocol
implementation (approx)

Synchronizers Latency
ps

Level 711

Edge-detecting 738

Pulse 750

TABLE II. LATENCY OF DIFFERENT TYPES SYNCHRONIZERS WITH
PROTOCOL IMPLEMENTATION

Latency of the Synchronizers with Protocol
implementation (approx)

Protocols Latency
ps

Full Handshake 4012

Partial Handshake I 3380

Partial Handshake II 3340

B. Power
Increase in speed and complexity of circuits available today

implies a significant increase in power consumption for very
large scale integrated circuits. Since power consumption plays
an important role in evaluating the efficiency of a system,
designers have always looked for different design protocols to
reduce power consumption.

To measure the power, we connected a dummy test source
in series with the power supply of the circuit. Using the
calculator available in the CADENCE tool, we calculated the
DC current and voltage at adjacent node and branch of the test,
respectively, and then evaluated the power consumption. This
way we made sure that the current supplied to the circuit is
considered in total. The values of the power measurement for
the three synchronizers and handshaking protocols are shown
in Tables III and IV, respectively.

TABLE III. POWER OF DIFFERENT TYPES SYNCHRONIZERS WITHOUT
PROTOCOL IMPLEMENTATION

Power Consumption of the Synchronizers
without Protocol implementation (approx)

Synchronizers Power(mW)

Level 1.09

Edge-detecting 1.12

Pulse 1.12

TABLE IV. POWER OF DIFFERENT TYPES SYNCHRONIZERS WITH
PROTOCOL IMPLEMENTATION

Power Consumption of the Synchronizers
with Protocol implementation (approx)

Protocols Power(mW)

Full Handshake 2.85

Partial Handshake I 2.59

Partial Handshake II 2.72

V. DISCUSSIONS
In this paper, a comparison of the three widely used

synchronizers i.e. level, edge detecting, pulse synchronizer has
been provided in terms of latency and power consumption.
These synchronizers were also incorporated in full handshake,
partial handshake I and partial handshake II protocols to
compare the working and performance based on the
quantitative metrics. The results in Tables I and III clearly
show that the level synchronizer offers the lowest latency and
power consumption as compared to the edge detecting and
pulse synchronizers because its architecture is free from any
combinational logic. But further analysis of its architecture and
functionality reveals that it works properly only if the input
data has a frequency equal or slower than the frequency of
synchronizer or the data moves from a faster to slower clock
domain.

The latency of the edge detecting synchronizer lies midway
between that of level and pulse synchronizer, whereas the
power consumption of the edge detecting and pulse
synchronizer is equivalent (as shown in Table I and III). The
requirement for correct operation of an edge-detecting
synchronizer is that the input pulse width should be greater
than the clock period of the synchronizer in addition to the hold
time required by the first flip-flop of the synchronizer.

Although the pulse synchronizer falls at the bottom in terms
of the latency and power consumption metric but it solves the
problem of the edge-detecting synchronizer, i.e., it gives a valid
output for a data signal moving from a slower to faster domain.
But if the input pulses are too close to each other than the
output pulse has a width greater than one clock cycle. The
situation worsens if the input pulse has a clock period twice the
synchronizer period. In this case, some logic 1’s in the data
may be missed. This synchronizer works better for transferring
data from faster to slower domain.

As for the handshaking protocols, the full handshake
protocol is robust because the communicating modules can
know each other’s states by looking at the request and
acknowledgement signals. The only drawback is that about 6-7
clock cycles are wasted to complete the sequence. In case of
the partial handshake protocols, although 4-5 clock cycles are
used but the communicating modules need to save states to
indicate a pending request.

From the latency point of view, partial handshaking
protocol II gives the best results because it has the swiftest
FSM in terms of number of clock cycles and the critical path of
its architecture is the fastest as compared to that of the full
handshake and partial handshake I protocol (Figure 10).
Therefore, from these results we conclude that for the power
consumption the partial handshaking protocol I is the most
optimum choice.

It can be inferred that the level synchronizer has the least
power consumption and latency because it does not have
combinational logic gates. As far as the handshaking protocols
are concerned, the partial handshaking protocols seem to be
optimum. The reason is that these protocols involve less
number of events resulting into lower latency and less number

of components in their architecture. The pros and cons of the
level, edge detecting and pulse synchronizers mentioned above
can be a useful tool for the designers to select the best suited
synchronizer amongst the three for a specific application in
addition to their intuition and prior experience.

VI. CONCLUSIONS
This paper presents a detailed analysis of three

synchronizers and their usage to implement asynchronous
handshaking protocols. Using CADENCE simulations, we
evaluated the performance of each synchronizer by calculating
its latency and power consumption.

We have provided a comprehensive performance analysis
of the synchronizers, i.e., level, edge-detecting and pulse, based
on two factors, namely latency and power. Level Synchronizer
with a latency of approximately 711ps and power consumption
of 1.09mW comes out as the best option among the three
synchronizers while operating at frequency of 1.5GHz and a
data rate of 500MHz. As for the handshaking protocol
implementation, the smallest latency is achieved by partial
handshake II, which is approximately 4012ps, while partial
handshake I has the least power consumption of 2.59mW. The
outcome of the results may be used in the selection of
appropriate synchronizers which fulfill the requirements of the
design. Each of these synchronizers has its own advantages and
disadvantages. It is demonstrated that in order to leverage upon
their strengths they have to be used in appropriate scenarios.

REFERENCES
[1] G. Semeraro, G. Magklis, R. Balasubramonian, D. H. Albonesi, S.

Dwarkadas, and M. L. Scott, “Energy-Efficient Processor Design Using
Multiple Clock Domains with Dynamic Voltage and Frequency Scaling”
in High-Performance Computer Architecture, 2002. Proceedings. Eighth
International Symposium, pp. 29 – 40.

[2] E. Rotem, A. Mendelson, R. Ginosar and U. Weiser “Multiple Clock and
Voltage Domains for Chip Multi Processors” in Microarchitecture,
2009. 2nd Annual IEEE/ACM International Symposium, pp. 459 – 468.

[3] Q. K. Zhu, “High-speed clock network design” Kluwer Academic
Publisher, Botson, 2003.

[4] S. Sarwary and S. Verma, “Critical clock-domain crossing bugs” in
Atrenta Inc - EDN, April 2, 2008

[5] J. Nyathi, S. Sarkar, and P. Pande “Multiple Clock domain
Synchroniztion for Network on Chip” in IEEE International SOC
Conference, 2007, pp. 291 – 294.

[6] J. Díaz, D. Koukopoulos, S. Nikoletseas, M. Serna, P. Spirakis and
Dimitrios M. Thilikos, “Stability and non-stability of the FIFO
protocol”, Proceedings of the thirteenth annual ACM symposium on
Parallel algorithms and architectures.

[7] T. Chelcea and S. M. Nowick, “Robust Interfaces for Mixed-Timing
Systems,” IEEE Transactions on Very Large Scale Integration Systems,
Vol. 12, No. 8, Aug. 2004, pp. 857-873.

[8] Y. Semiat, R. Ginosar, Timing measurements of synchronization
circuits, ASYNC (2003) 68–77.

[9] R Ginosar, “Fourteen ways to fool your synchronizer in Asynchronous”
in Circuits and Systems, 2003. Proceedings. Ninth International
Symposium, pp. 89-96

[10] Cadence design system, Inc.“Cadence Virtuoso Custom Design
Platform”

[11] W.J. Dally and J.W. Poulton, "Digital Systems Engineering", Cambridge
University Press, 1998.

[12] N.H.E. Weste and D. Harris “Cmos Vlsi Design: A Circuits And
Systems Perspective”

View publication statsView publication stats

https://www.researchgate.net/publication/233388727

