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Abstract- Reliable transferring of data from one clock domain to 
another requires synchronization. Therefore, synchronizers play 
an important role in clock domain crossing (CDC). But despite 
their wide applications, there is no standard quantitative metric 
available to analyze various synchronizer configurations on 
common grounds. To overcome this limitation, this paper 
presents a comparison of three basic and widely used 
synchronizers. Latency and power consumption metric are 
measured for level, edge-detecting and pulse generating 
synchronizers.  Furthermore, effects of these synchronizers are 
studied when applied to some commonly used asynchronous 
handshaking protocols under 90nm CMOS technology.  

Keywords-Synchronizers, Handshaking Protocol, System on 
chip (SOC) 

I.  INTRODUCTION  
Recent microprocessors and graphical processing units 

contain several clock domains within a chip [1, 2]. Modules in 
different clock domains need to communicate with each other 
and hence require crossing the clock domain, a phenomenon 
that is commonly called as clock domain crossing (CDC). 

When a signal crosses the clock domains it is treated 
asynchronously in the receiving domain. Such a signal is called 
mutually asynchronous signal and for a system to work 
properly this signal requires safe synchronization. In modern 
deep sub-micron (DSM) technologies; factors like clock skew 
and jitter due to process, voltage and temperature (PVT) 
variations [3] adversely affect the timing behavior of signals. In 
the case of high frequency applications, if not treated properly, 
these timing uncertainties in mutually asynchronous signals 
can cause malfunctioning of the system. Therefore, recently 
extensive research is underway for reliable design protocols to 
solve this problem of synchronization.  

Several synchronizer solutions have been proposed to solve 
these issues.  Sarwary et al. [4] Presented an enable based 
synchronizer. The protocol assumes the data to be stable when 
enable is asserted. The basic synchronizer in this protocol is the 
traditional two flop synchronizer. This approach addresses 
issues such as metastability convergence. Jabulani et al. [5] 
proposed a synchronization scheme for network-on-chip 
(NOC) systems. The scheme consists of FIFO designs [6] that 
interface system on chip modules running at different 
frequencies.  The authors have compared their protocol to the 

one proposed by Chelcea and Nowick [7]. They showed that 
their architecture has low latency and power consumption. 
Ginosar and Semiat in [8] have given an analysis of a standard 
two flop synchronizer and some pleisochronous synchronizers. 
Each of these CDC schemes is implemented and analyzed 
using different design constraints and technologies. Thus, 
identifying the most efficient synchronizer for a given system 
is a very challenging task, if not impossible. Usually the main 
tools available to the designer for selecting a synchronizer are 
intuition and prior experience. Therefore, there is a dire need to 
quantitatively analyze the context and develop the parameters 
of interests so that designers can evaluate the available CDC 
methodologies on common ground and identify the most 
efficient contextual based option. In [9] Ginosar also reflected 
upon the same idea.  However in general these studies focus on 
the design of synchronizer and the contextual based 
implementation details are left unexplored.  

In order to overcome the above mentioned synchronizer 
selection problems, this paper presents a thorough analysis of 
three of the widely used synchronizers. The three 
configurations include level synchronizer, edge-detecting 
synchronizer and pulse generating synchronizer. Initially, in 
this paper some parameters of interest for designers are 
identified, such as absolute latency, clock cycle latency, and 
relative frequency of the communicating modules and overall 
power consumption of the system for a reasonable pre-
established criterion. The comparison is made using same 
parameters and technology for all synchronizers.  The design is 
done using the 90nm CMOS technology in CADENCE [10], 
which is an efficient IC designing tool. A comprehensive 
analysis is performed on the implementation of these 
synchronizers for full handshaking and partial handshaking 
asynchronous protocols.  To the best of our knowledge, this is 
a premier work in contextual based synchronizer suitability 
analysis. 

The rest of the paper is organized as follows: Section II 
explains the three synchronizers that are analyzed. Later, 
Section III discusses the hardware implementation of the 
analyzed synchronizers. In section IV, experimental results 
performed using 90nm processing technology are presented 
followed by some discussions in Section V. Finally, section VI 
concludes the paper. 



II. STATE OF ART SYNCHRONIZERS 
Synchronization is a process of imposing or identifying an 

ordering of event on the signal lines [11]. The purpose of 
synchronization is to prevent metastability in logic flow. 
Traditional synchronizers comprise of flip-flops that are 
combined together without any combinational logic between 
them. It is also worth mentioning that for proper 
synchronization the signal from flip-flop in one clock domain 
should enter the flip-flop in the second clock domain without 
passing through a combinational logic. Fulfillment of this 
condition is necessary because the first stage of the 
synchronizer is sensitive to glitches and can force it to give an 
incorrect output to rest of the design. 

The synchronizers can be broadly classified into three main 
categories; level, edge-detecting and pulse. Other designs also 
exit but these synchronizers fulfill most of the requirements, 
designer’s experience. This paper analyzes and compares these 
three types of synchronizers. 

A. Level Synchronizer 
The level synchronizer [12] consists of two flip-flops 

connected back to back as shown in Fig. 1. It is also known as 
two-flop synchronizer and is the basic component of all 
synchronizers. The mutually asynchronous signal may fail to 
meet the setup or hold time requirement of the first flip-flop in 
the receiver domain causing it to fall into a metastable state. If 
this synchronizer is made up of only one flip flop instead of 
two then due to the occurrence of metastable output the 
receiving domain would be vulnerable to the downstream logic 
from the metastable state of the first flip flop. In contrary, the 
two flip flop configuration allows the synchronizer one clock 
cycle duration to resolve the metastability  

 
Figure 1.  Block Diagram of Level Synchronizer  

In a level synchronizer, signal crossing clock domain stays 
high and low for more than two clock cycles in the new 
domain. It is requisite for the circuit that signal changes its 
state from valid to invalid before becoming valid again. This 
condition is necessary because each time the signal changes its 
state from invalid to valid state the receiving circuit considers it 
as an event. It does not depend on how long the signal remains 
valid. 

B. Edge-detecting Synchronizer 
The second type of synchronizer is the edge-detecting 

synchronizer [12] (Fig. 2). It consists of a level synchronizer 
and an additional flip-flop at its output. The inverted output of 
this added flip flop and the output of the level synchronizer are 
ANDed as shown in Fig. 2. The purpose of this synchronizer is 
to detect the rising edge of the input and generate a clock wide 

active high pulse at the output. The circuit can be modified to 
detect the falling edge of the input. It can be done by switching 
the inverter on the AND gate. If a NAND gate is used instead 
of an AND gate then the circuit generates an active low pulse. 

 
Figure 2.  Block Diagram of Edge-detecting Synchronizer 

C. Pulse Generating  Synchronizer 
The third type of synchronizer discussed here  is the pulse 

synchronizer [12] (Fig. 3). The input of a pulse synchronizer is 
a single clock wide pulse, which triggers the toggle circuit in 
the originating domain. The toggle circuit changes its output 
state whenever it receives an input signal. The output of the 
toggle circuit passes through the level synchronizer and acts as 
an input to the XOR gate. The second input of the XOR gate is 
a one clock cycle delayed version of the output of the level 
synchronizer. 

 
Figure 3.  Block Diagram of  Pulse Generating Synchronizer 

III. HARDWARE IMPLEMENTATION USING HANDSHAKING 
PROTOCOL 

This section explains the hardware implementation of the 
above mentioned synchronizers. Fig. 4 shows a general block 
diagram of two modules that are “Receiver module” and 
“Sender Module”. The two modules exist in different clock 
domains and communicate with each other through 
synchronizers.   

 
Figure 4.   Synchroniztion with Handshaking Protocol 

The design shown in Fig. 4 consists of two phases; 
synchronization phase and data transmission phase. A state 
machine which is part of the design (not shown in the figure) 



decides the phase. In the synchronization phase the 
synchronizers with the help of a handshaking protocol, 
synchronize the signals crossing the clock domains. 
Handshaking allows circuits to communicate effectively when 
their response time is unpredictable. On the completion of the 
synchronization process the data is transmitted from one 
domain to the other during the data transmission phase.  

We used three versions of handshaking protocols; a full 
handshake and two partial handshake techniques.   

A. Full Handshake 
In the full hand shake protocol, modules wait for each 

other’s acknowledgement before inserting or removing their 
respective signals. The state diagram for respective handshake 
is shown in Fig. 5. 

 
Figure 5.  State diagram of Full Handshake Protocol 

The sender and receiver module communicate with each 
other using R (request) and ACK (acknowledgement) signals. 
At first the sender module asserts a request which is detected 
by the receiver module. After verifying that the signal is valid 
the receiver module asserts an acknowledgement signal. The 
sender module performing similar verification then drops its 
request. It does not assert a new request until the receiver 
module drops it acknowledgement signal. 

This type of handshake uses level synchronizers as depicted 
in (Fig. 6). It is used when the receiver module needs to inform 
the sender module that the request is being processed. A 
requirement of this protocol is that the sender module does not 
send a request signal unless it gets an invalid acknowledgement 
signal. 

 
Figure 6.  Hardware Implementation of Full Handshake Protocol 

B. Partial Handshake I 
The second type of protocol is the partial handshake. In this 

type of handshake, the sender and receiver modules do not wait 

for each other before they drop their respective signals and 
move on with the handshaking process (Fig. 7).  

The sender module asserts its request signal as an active 
high level, and the receiver module acknowledges it with a 
single clock wide pulse. In this case, the receiver is not 
concerned when the sender will drop a request. On the other 
hand, to make the protocol work properly, the sender needs to 
drop the request signal for at least one clock cycle as otherwise 
the receiver cannot differentiate between a new and a preceding 
request. 

 
Figure 7.  State diagram of Partial Handshake I Protocol 

For this type of handshake a pulse synchronizer is used at 
the sender’s end while a level synchronizer is used at the 
receiver’s end (Fig. 8). 

 
Figure 8.  Hardware Implementation of Partial Handshake I Protocol 

C. Partial Handshake II 
A second type of partial handshake scheme can also be 

used. In this protocol the sender asserts its request signal 
consisting of a single clock wide pulse, which is acknowledged 
by the receiver with a single clock wide pulse (Fig. 9).  



 

 
Figure 9.  State diagram of Partial Handshake II Protocol 

This type of handshake uses pulse synchronizer both at the 
sender and receiver ends (Fig. 10). But if one module has a 
clock twice as faster than the other then it can use an edge 
detecting synchronizer instead.  

 
Figure 10.  Hardware Implementation of Partial Handshake II Protocol 

IV. EXPERIMENTAL RESULTS 
State machine implementation of the three synchronizers; 

level, edge-detecting and pulse using different handshaking 
protocols have been shown in Figures 5, 7 and 9, respectively. 
This section summarizes the results obtained after analyzing 
and comparing these synchronizers. 

All the electrical simulations are performed using 90nm 
CMOS IHP technology. For gate level implementation, pass 
transistor logic has been used. The flip-flop in each 
synchronizer is a true single phase clock (TSPC) DFF. To 
eliminate ideal characteristics of the pulse sources, buffers are 
connected at the inputs and a capacitive load of 900pF has been 
added at the output to mimic as standard driven load. The 
comparison among the synchronizers has been done based on 
the latency and power consumption. 

A. Latency 
Latency is the measure of time delay in a system. In case of 

synchronizers, it refers to the time taken by a synchronizer to 
synchronize the signal and provide a valid output [15]. In our 
analysis the latency of each synchronizer is calculated as the 
time difference between the point at which the synchronizer 
samples the data and the point where the sampled data appears 
at its output. It is represented as the duration between points A 
and B, in Fig. 11. This figure shows the simulation results for a 
level synchronizer. The synchronizer clock is operating at a 
frequency of 1.5GHz whilst the maximum input data rate (data-
in) of once every three clock cycle is assumed. Absolute 
latency of about approximately 711ps is obtained between 
point A and B in Fig. 11, which is slightly more than one clock 
cycle.  

Similarly, we measured the latency for the edge-detecting 
and pulse generating synchronizers, keeping with the same 
operating frequency and input data rate. It should be noted that 
the data is operating at a much slower frequency. The results 
are summarized in Table 1. 

For further analysis, we implemented the three widely used 
handshaking protocols, mentioned in section III, using above 
synchronizers and FSM’s. The synchronizers are chosen 
depending on the type of handshaking protocol. 

Figure 11.  Simulation Results for latency calculation of a level synchronizer 



Fig. 12 shows the simulation result for the full handshake 
protocol. Both receiver and sender modules are operating at the 
same frequency of 1.5GHz. The active high data signal 
indicates that the data is present at the sender module. Using 

the simulation waveform, the latency is calculated as the time 
difference between the Request sent and ACK received by the 
sender. Similar analysis was done for the other two protocols 
as well and the results are given in Table 2. 

 
Figure 12.  Simulation Results for latency calculation of a Full Hanshake Protocol 

TABLE I.  LATENCY OF DIFFERENT TYPES SYNCHRONIZERS WITHOUT 
PROTOCOL IMPLEMENTATION 

Latency of the Synchronizers without protocol 
implementation (approx) 

Synchronizers Latency 
ps 

Level 711 

Edge-detecting 738 

Pulse 750 

TABLE II.  LATENCY OF DIFFERENT TYPES SYNCHRONIZERS WITH 
PROTOCOL IMPLEMENTATION 

Latency of the Synchronizers with Protocol 
implementation (approx) 

Protocols Latency 
ps 

Full Handshake 4012 

Partial Handshake  I 3380 

Partial  Handshake II 3340 

B. Power 
Increase in speed and complexity of circuits available today 

implies a significant increase in power consumption for very 
large scale integrated circuits. Since power consumption plays 
an important role in evaluating the efficiency of a system, 
designers have always looked for different design protocols to 
reduce power consumption. 

To measure the power, we connected a dummy test source 
in series with the power supply of the circuit. Using the 
calculator available in the CADENCE tool, we calculated the 
DC current and voltage at adjacent node and branch of the test, 
respectively, and then evaluated the power consumption. This 
way we made sure that the current supplied to the circuit is 
considered in total. The values of the power measurement for 
the three synchronizers and handshaking protocols are shown 
in Tables III and IV, respectively. 

TABLE III.  POWER OF DIFFERENT TYPES SYNCHRONIZERS WITHOUT 
PROTOCOL IMPLEMENTATION 

Power Consumption of the Synchronizers 
without Protocol implementation (approx) 

Synchronizers Power(mW) 

Level 1.09 

Edge-detecting 1.12 

Pulse 1.12 

TABLE IV.  POWER OF DIFFERENT TYPES SYNCHRONIZERS WITH 
PROTOCOL IMPLEMENTATION 

Power Consumption of the Synchronizers 
with Protocol implementation (approx) 

Protocols Power(mW) 

Full Handshake 2.85 

Partial Handshake  I 2.59 

Partial  Handshake II 2.72 



V. DISCUSSIONS 
In this paper, a comparison of the three widely used 

synchronizers i.e. level, edge detecting, pulse synchronizer has 
been provided in terms of latency and power consumption. 
These synchronizers were also incorporated in full handshake, 
partial handshake I and partial handshake II protocols to 
compare the working and performance based on the 
quantitative metrics. The results in Tables I and III clearly 
show that the level synchronizer offers the lowest latency and 
power consumption as compared to the edge detecting and 
pulse synchronizers because its architecture is free from  any 
combinational logic. But further analysis of its architecture and 
functionality reveals that it works properly only if the input 
data has a frequency equal or slower than the frequency of 
synchronizer or the data moves from a faster to  slower clock 
domain.  

The latency of the edge detecting synchronizer lies midway 
between that of level and pulse synchronizer, whereas the 
power consumption of the edge detecting and pulse 
synchronizer is equivalent (as shown in Table I and III). The 
requirement for correct operation of an edge-detecting 
synchronizer is that the input pulse width should be greater 
than the clock period of the synchronizer in addition to the hold 
time required by the first flip-flop of the synchronizer.  

Although the pulse synchronizer falls at the bottom in terms 
of the latency and power consumption metric but it solves the 
problem of the edge-detecting synchronizer, i.e., it gives a valid 
output for a data signal moving from a slower to faster domain. 
But if the input pulses are too close to each other than the 
output pulse has a width greater than one clock cycle. The 
situation worsens if the input pulse has a clock period twice the 
synchronizer period. In this case, some logic 1’s in the data 
may be missed. This synchronizer works better for transferring 
data from faster to slower domain. 

As for the handshaking protocols, the full handshake 
protocol is robust because the communicating modules can 
know each other’s states by looking at the request and 
acknowledgement signals. The only drawback is that about 6-7 
clock cycles are wasted to complete the sequence.  In case of 
the partial handshake protocols, although 4-5  clock cycles are 
used but the communicating modules need to save states to 
indicate a pending request. 

From the latency point of view, partial handshaking 
protocol II gives the best results because it has the swiftest 
FSM in terms of number of clock cycles and the critical path of 
its architecture is the fastest as compared to that of the full 
handshake and partial handshake I protocol (Figure 10).  
Therefore, from these results we conclude that for the power 
consumption the partial handshaking protocol I is the most 
optimum choice. 

It can be inferred that the level synchronizer has the least 
power consumption and latency because it does not have 
combinational logic gates. As far as the handshaking protocols 
are concerned, the partial handshaking protocols seem to be 
optimum.  The reason is that these protocols involve less 
number of events resulting into lower latency and less number 

of components in their architecture. The pros and cons of the 
level, edge detecting and pulse synchronizers mentioned above 
can be a useful tool for the designers to select the best suited 
synchronizer amongst the three for a specific application in 
addition to their intuition and prior experience. 

VI. CONCLUSIONS 
This paper presents a detailed analysis of three  

synchronizers and their usage to implement asynchronous 
handshaking protocols. Using CADENCE simulations, we 
evaluated the performance of each synchronizer by calculating 
its latency and power consumption.  

We have provided a comprehensive performance analysis 
of the synchronizers, i.e., level, edge-detecting and pulse, based 
on two factors, namely latency and power. Level Synchronizer 
with a latency of approximately 711ps and power consumption 
of 1.09mW comes out as the best option among the three 
synchronizers while operating at frequency of 1.5GHz and a 
data rate of 500MHz. As for the handshaking protocol 
implementation, the smallest latency is achieved by partial 
handshake II, which is approximately 4012ps, while partial 
handshake I has the least power consumption of 2.59mW. The 
outcome of the results may be used in the selection of 
appropriate synchronizers which fulfill the requirements of the 
design. Each of these synchronizers has its own advantages and 
disadvantages. It is demonstrated that in order to leverage upon 
their strengths they have to be used in appropriate scenarios. 
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