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Abstract. Probabilistic model checking is a prominent formal verifi-
cation technique for analyzing stochastic systems. Probabilistic model
checkers hinge upon the sparse matrix-vector (SpMV) multiplications to
compute reachability probabilities, i.e., the probability of reaching a tar-
get state from a given initial state. Being compute- and memory-intensive
task, SpMV is a bottleneck in using probabilistic model checking for an-
alyzing scalable real-world case studies. This paper presents a method-
ology to accelerate SpMV multiplication in probabilistic model checkers
using graphic processing units (GPUs). Since GPUs efficiently execute
basic linear algebraic operations such as multiplication, one achieves im-
provements in computation times. These improvements, however, are
not significant in the presence of memory transfer overheads. We apply
traditional optimization techniques and hide the memory transfers from
the host computer to the GPU inside the state-space-exploration stage.
This hiding significantly reduces the latency caused by memory transfers
during execution. We implemented the proposed acceleration approach
with CUDA-based cuSPARSE API and asynchronous multiple copy al-
gorithms in the probabilistic model checker STORM, with a focus on its
SpMV multiplier. In our experiments, we observed 16 times speed up on
average over the state-of-the-art.

Keywords: Probabilistic model checking - GPU - STORM - Sparse matrix-
vector multiplication

1 Introduction

Model Checking [11] is a widely used formal verification technique [23] that ex-
haustively builds a behavioral model M of a given system for a given property ¢,
and automatically verifies if the system exhibits the property M = ¢. A model
checker not only verifies the properties over a model but, in case of a failing
property, also provides counterexamples. These counterexamples help develop-
ers in understanding and rectifying the non-conforming behavior. As real-world
systems pervasively exhibit stochastic behavior, probabilistic model checking
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(PMC) is an important extension of model checking [25]. PMC allows verify-
ing stochastic systems, modeled as Markov chains (MCs) or Markov decision
processes (MDPs), against probabilistic properties.

Scalability is a persistent issue for both steps of model checking: (1) model
building and (2) property verification. The scalability issue in the former step
leads to the infamous state-space explosion problem [38]. A promising technique
to mitigate the state space explosion problem is the lazy verification approach
where partial state space is explored to achieve the results of acceptable precision,
see [28]. The scalability issue in the later step is equally important. Internally, the
probabilistic model checkers represent the probabilistic behavioral model (state
space) as a sparse matrix, and property verification leads to repeated sparse
matrix-vector multiplication. As the size of the state-space is translated into
the dimensions of the said matrix, the growing size of state space contributes
to the complexity of performing arithmetic on such matrices. This increase in
complexity results in large computation costs and memory requirements.

Parallel model checking algorithms [3,4,37] traditionally rely on CPU clusters
to mitigate the property verification scalability issue, but GPUs have emerged
in recent years as the primary compute resource for the application and ac-
celeration of such mathematics. Bosnacki et al. [8] used the Jacobi method in
the core sparse matrix and dense vector multiplication to speed up the Markov
chain model checking and demonstrated their results on PRISM, a probabilistic
model checker, running on GPUs. This was further improved in [9] by enhancing
the parallelization of the algorithm, where the memory copying is identified as
the main bottleneck for GPU-based algorithms. Cormie-Bowins et al. [12] imple-
mented the matrix multiplication using the Jacobi and the BiCGStab method on
GPUs. They compared their work with Bosnacki’s advanced GPU-based PRISM.
Wijs et al. [40] identified how the wrap-based segments and the modified sparse
row (MSR) format matrices improved the sparse matrix-vector multiplication
4.5 times on average. Bylina et al. [10] identified multiple formats for storing
sparse matrices to limit the memory footprint and discussed their applicability
in GPU-based sparse matrix-vector multiplication. Berger et al. [7] utilized the
CUSP library to obtain a significant speed-up when dealing with large models
that require multiple iterations to overcome the initial memory copy overhead in
STORM [17], a probabilistic model checker. They identified two main challenges:
(1) the memory transfer overheads consuming up to 99.96% of time in extreme
cases and (2) the lack of hardware support for double-precision floating-point
arithmetic. Wijs et al. [39] provided a comprehensive tool, called the GPU-
EXPLORE. This tool combines the maximum data inside the 32-bit integers and
stores information in the texture memory to mitigate the uncoalesced access
overheads. This approach targets only explicit-state model checking; hence, it
cannot be utilized for probabilistic models. Bell et al. [5] presented a generic
approach to SpMV multiplication on GPUs. They proposed fine-tuned kernels
for different storage types of sparse matrices. Moreover, they proposed bypassing
the memory latency and computing bottleneck by introducing large-scale GPU-
based distributed systems. In all the above-mentioned works, we find latency—
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delay due to copying data from a host to device—as the primary bottleneck
for GPU-based SpMV multiplication. This underscores the need for a generic
multiplication kernel that fully utilizes the available hardware resources.

This paper presents a methodology to further speed up the SpMV multipli-
cations. We investigate the SpMV multiplication in the context of probabilistic
reachability probability for discrete-time Markov chains (DTMCs). The method-
ology (1) leverages upon the traditional optimization methods, (2) hides the
memory transfers from the host to the GPU inside the state-space-exploration
stage and (3) benefits from the STORM framework-specific algorithms. We use
CUDA’s native cuSPARSE API and compare the results with the existing CUSP
and CPU-based implementations. We also identify some pitfalls and bottlenecks
that we encountered when accelerating such algorithms on GPUs. Our selection
of STORM is mainly motivated by its promising results [18,24] while maintaining
the space for improvement in SpMV multiplication.

2 Preliminaries

2.1 Behavioral Model

Definition 1 (Discrete Time Markov Chains).

A discrete-time Markov chain (DTMC) is a tuple M = (S, P, s;nit, AP, L)
[2], where: S is a set of states; P : S x S — [0,1] is the transition probability
function such that Vs : 3, o P(s,8) = 1; sine € S is an initial distribution;
AP is a set of atomic propositions; and L : S — 247 is a labeling function.

2.2 Reachability Probability

Reachability probability amounts to computing the probability to reach a pre-
defined set of states B C S from any s € S\ B. Let 2, = Pr{s |= 0B} denote
the reachability probability for state s. x, is computed as:

RS Z P(s,t) -z + ZP(s,u) . (1)

teS\B u€B
————
reach B via t¢B reach B in one step

Equation 1 states that either a state s € B is reached within one step or first a
state ¢ € S\ B is reached from which B is reached. If B is not reachable from
s, then z; = 0. If s € B, then z;, = 1, see [26] for details. For the vector x =
(Xs)ses, where all set of states have a valid path to B, we get from Equation 1

zs = Az + b, (2)

where the matrix A contains the transitional probabilities and b contains the
probability of reaching B in one step. Using a (heterogeneous) linear equation
system, we rewrite Equation 2 as:

(I—A) - x=b, (3)
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where [ is an identity matrix. The probability distribution of M being in a
state after n transitions, given that the computation starts with an initial state
vector S;n;t, 1S denoted by 91{1\’1 and computed as

91?/[:P'P'--'P'sinit:Pn'Sinit (4)

Since calculating the n power of the matrix is a computationally expensive op-
eration [2], @M is calculated by recursive matrix-vector multiplications.

2.3 Sparse-Matrix representations

The general sparse matrix-vector multiplication equation is y = aAzx + By,
where: A is the sparse matrix of size Cools x Rows; = (y) is a dense vector of size
Cols (Rows); and both « and 8 are scalars. The process of multiplication can,
therefore, be summarized by the following equation

Yi = Z Aijxj+ By (5)

A, ;70

Equation 5 indicates that the operation to be performed at each Non-zero
value (Vynz) of the sparse-matrix A results in an overall (Vyyz + Rows) - 2
floating point operations.

This paper utilizes the compressed sparse row (CSR) format due to (1) its
wide utilization in STORM and (2) its ability to provide a balanced computation
across matrices of different sizes and sparsity, as identified in [10,21]. The CSR
format divides the matrix into 3 arrays: (1) non-zero data values, (2) their column
indices, and (3) offsets of each row represented in the data.

2.4 GPU Programming

Graphical processing units (GPUs) are highly parallel programmable proces-
sors. They specialize in accelerating the low-level algorithms, which have large
computational requirements and are parallelizable. GPUs follow the single in-
struction multiple data (SIMD) programming model, i.e., the GPU processes
multiple data elements in parallel using the same instruction.

Next, we describe two of the most widely used GPU accelerators and their
pros and cons. Both have their unique programming models and provide multiple
tools to allow optimizations and computations of algorithms.

OpenCL. The OpenCL [32] provides a cross-platform environment that can
be easily ported to multiple architectures like the CPUs, GPUs, digital signal
processors (DSPs), and even field-programmable gate arrays (FPGAs). Unfortu-
nately, due to this heterogeneous behavior, OpenCL is not device-specific; hence
it does not specialize in any particular hardware.
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CUDA. To cater for general-purpose computing on GPUs (GPGPU), NVIDIA
has developed the compute unified device architecture (CUDA) [36]. As the
scientific community is the primary user of this model, we have many off-the-
shelf APIs available that target most of the complex and commonly used tasks.

A survey of existing work considers CUDA as a better option due to the
availability of specialized APIs, like the CUBLAS and the cuSPARSE [13, 34].
Our use of CUDA is mainly motivated by the following two reasons:

— Fang [19] shows that CUDA significantly outperforms OpenCL in arithmetic
computations but lacks in data movement,

— CUDA provides us with multiple open-source tools that reduce the time and
complexity of converting the existing code to the CUDA platform.

The GPU devices are typically mounted on the peripheral component inter-
connect express (PCle) socket when connected as a co-processor. These devices
act as slaves while relying mostly on the CPU to give instructions in a form of
tiny applications called kernels. Fig. 1a depicts this behavior of sequential exe-
cutions in a CUDA application. All data, which needs to be processed, must be
transferred to the GPU via the PCle interface, as shown in Fig. 1b.

The CUDA programming model provides the user with an abstraction of this
parallel architecture in the form of directives governing the systems ability to
call the SIMD instructions, memory movement and thread synchronizations. At
the lowest level of a CUDA subsystem, we have a simple thread that performs
the task assigned by the kernel. A thread block is a batch of threads that share
memory and perform a task either collectively or individually. The threads of
multiple blocks do not co-operate and require extensive synchronizations. Fig.
la shows how various blocks can be combined to form a one, two, or three
dimensional units called grids.

GPU GPU
e[ |
Block (1,N) GPU memory Host to Device Engine
[Block (0,0) | [Block (0.1) | -+ [Block (0,N) 800, .. e
[Block (1,0) | [Block (1,1) | -+ [Block (1N) | | Fiiads o). [rwesdsog)] l T
[Biock (M.0) |[Block M) | - [Block (v \| [Eee£00 -~ [eass0)

I ‘ Kernel ‘ cPU

Grid 2 L, Local
[Block (0,0) | [Block (0,1) | -+ [Block (O,N) Memory System Memory
l T

[Block (1,0) | [Block (1,1) | *+ [Block (1,N)

[Block (M.0) | [Block (M,1) |+ [Block (M,N) r e
memory

(a) CPU controlled GPU (b) Mem. transfer over PCle

Fig.1: GPU programming model
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Fig. 2: Proposed methodology diagram

3 Proposed Optimization Flow

This section outlines a strategy, based on conventional and non-conventional
methods, to reduce the compute requirements of a probabilistic model checker.
The overall approach is to determine a set of pre-requisites rules along with
system-specific techniques to optimize the SpMV multiplication, see Fig. 2.

Typically, in optimization problems, the whole system is kept intact and only
the problem set is cherry-picked for acceleration. Likewise, we identify possible
injection points in the system where we introduce the custom code. We introduce
Algorithm 1 that describes the proposed optimization strategy along with key
points of code injection.

3.1 Identification of the SpMV

As discussed in Section 2, the process of calculating the probabilities using the
matrix-vector multiplication involves very high computation requirements. In the
proposed approach, we identify algorithms that first build the model in terms
of the sparse-matrix and then perform model checking. The approach is in line
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with the STORM’s sparse and hybrid engine. This approach allows us to shift
the relatively sequential operation of state exploration on the CPU along with a
sparse matrix solver on the GPU. As the explored state of the model is sparse,
we use different sparse storage formats to further reduce the memory footprint.

3.2 Introducing CUDA

We introduce a bottom-up technique where we first target and isolate the STORM
multiplier and replace it with CUDA based cuSPARSE API. CUSP [6] is another
open-source CUDA library that performs the SpMV multiplication. Our choice
of using cuSPARSE over CUSP is primarily based on the fact that cuSPARSE
has coalesced global memory accesses and provides better occupancy of GPUs.
Moreover, it allows asynchronous executions with respect to the host and may
return control back to the user before completion. Another reason is that, unlike
CUSP, cuSPARSE has been integrated into the CUDA toolkit. Thanks to this
integration, cuSPARSE is regularly updated and actively maintained with the
support for the state-of-the-art drivers, technology and CUDA enhancements,
such as using tensor cores [31], NVIDIA tool extension (NVTX), etc. We discuss,
in the experimental results section, how cuSPARSE was observed to be faster than
the CUSP implementation.

In Algorithm 1-Phase C, we create a multiplier that accepts the sparse-matrix
Acsg in the CSR format, initial vector x;,;+ and N as the number of iterations
of the multiplier. The copying of data to and from the GPU is required before
processing any data. This is followed by calling the cuSPARSE’s single or double
precision SpMV function. Initially, we need to calculate the memory required for
the GPU using the equation:

Mpeg = (Pvar- (VN z|[+|Zinitl-2) + (Prna- (O f fset row| |+ [V nz][))) (6)
where Py q; is the precision of Vynz, O f fsetrow is the row offset vector of Acgr
and Vi nz is the vector of values in Acgr. The Mg, is the maximum memory
that the GPU can accommodate without dividing the matrix into a subset to
compute the SpMV multiplication.

Another limiting factor is the PCle interface of the GPUs. Table 1 presents an
overview of different PCle interfaces available and their theoretical performance.

Table 1: PCle types and data rates [1,20]

Interface |Data-rate supported
PCle x1 Gen 3 1 GB/s
PCle x8 Gen 3 8 GB/s
PCle x16 Gen 3 16 GB/s
PCle x16 Gen 4 32 GB/s

Memory copy is the main source of latency in all GPU applications that are
generated as a consequence of the type of PCle slot selected. Fig. 4 illustrates
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the ratio of the time spent on kernel compute vs memory transfers. We observed
that in the mobile versions of GPUs, the x8 PCle interface is commonly used
due to the limited availability of space, and on the other hand, fast x16 interfaces
based on Gen 3, or more recently Gen 4, are used in desktop computers.

Algorithm 1 Complete optimized algorithm
Phase-A

1: procedure BUILDING SPARSE MATRIX(M)

2:
3: procedure STATE EXPLORATION(S, CDmin)
4: ToExplore = {so}
5: Discovered = { }
6: Sota = { }
7 while ToExzplore # Null do
8: Spicked € ToExplore
9: sx = FindSuccessors(spicked )
10: Discovered = Discovered U Spicked
11: ToExplore = (ToExplore \ Spicked) U Sk
12: if s, is > Cpmin then > 1st insertion of CUDA
13: Copy-Asynchronous(Vehunks (1)) = Sz \ Sotd
14: Sold = Saz
15: CPmin = CPmins1.75
16: end if
17: end while
18: end procedure
19:
20: end procedure
Phase B
21: procedure REASSEMBLE AND COPY(Vohunks, Tinit) > 2nd insertion of CUDA
22: Copy-Asynchronous(Zinit )Host— Device
23: for each item i in Vopunks do
24: Copy-Optimized(Vehunks (1) —AcsRr)Device— Device
25: end for
26: end procedure
Phase C
27: procedure CUDA MULTIPLIER(ACSR, Tinit, N) > 3rd insertion of CUDA
28: for values of N do
29: y = cuSPARSE SpMV (Acsr - Tinit )
30: Swap pointers(Zinit<y)
31: end for

32: end procedure

3.3 Basic Optimizations

Several possible optimizations can be considered, and at various levels, ranging
from overlapping data transfers with computation down to fine-tuning floating-
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point operation sequences. NVIDIA provides a best practice guide [14] that
outlines all traditional optimization strategies. In our context, minimizing the
transfer of data between the host and the device is essential. This minimization
might lead to sacrificing the computations on GPU to run kernels that otherwise
exhibit similar performance on the host CPU.

Pinned Memory Page-locked or pinned memory transfers attain the highest
bandwidth between the host and the device. Since the GPU is not able to access
the data directly from the pageable host memory, the CUDA driver must first
allocate a temporary page-locked, or “pinned” memory. The required data is
first copied to the pinned array and then transferred from the pinned array to
the device memory. On PCle x16 Gen3 cards, for example, the pinned memory
can attain transfer rates of about 12 GB/s.

Async-Transfer CudaMemcpy provides the basic data transfer between the
host and the device by blocking the execution control of the host thread until the
data transfer is complete. The asynchronous data transfer function, cudaMem-
cpyAsync, is a non-blocking variant of the cudaMemcpy in which the control is
returned immediately to the host thread. This allows the user to queue multiple
copy commands to constantly engage the Copy-engine while the CPU is free to
perform other tasks. Utilizing async-transfers along with pinned memory tech-
niques, forms the “Copy-Asynchronous” procedure in Algorithm 1.

Stream is a pipeline within the CUDA API that allows a sequence of operations
to be executed on the device in a given order, defined host-side. These streams,
while maintaining the order within the context they run, allow the execution of
multiple streams that can be interleaved or executed concurrently. Fig. 3 shows
how multiple streams can fully utilize hardware that remains unused when a
sequential flow is implemented.

Sequential Version

Host to Device Transfer Stream 0

Kemel Execution

Stream 0
Stream 0 Stream 0 k

Device to Host Transfer Stream 0

Asynchronous with multiple streams

Host to Device Transfer ‘ Stream 0 ‘ Stream 1| Stream 2
Kemel Execution ‘ Stream 0 | Stream 1 | Stream 2 ‘
Device to Host Transfer Stream 0 | Stream 1 ‘ Stream 2

Fig. 3: Stream allowing sequential operation into concurrent operations

Some other optimization techniques include batching small transfers together
in order to fully utilize the PCle transfer speeds and handling of strided accesses
using coalesced reads from the global memory.
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3.4 Hiding Memory Latency

While traditional optimization techniques provide multi-fold speed-ups, most
algorithms require custom optimizations that exploit the flow of the system to
create room for specific code insertion. It can be observed form Fig. 4 that
the bulk of memory latency comes from the copying of the three CSR vectors
replacing the transitional matrix. Therefore, minimizing the time taken for this
operation is of utmost importance.

Memepy HioD ||Acge~ Data‘

Acsn Col || APt | . |

Memcpy D to H ‘ You
Kemel [spmv]spmv|

Fig. 4: Memory latency generated when computing SpMV multiplication.

For repeated Y; = Ax; + b, the value of z; is equal to Y;_1, this adds latency
due to the transfer of vector from device to device. In cases where two variables
of equal length within the CUDA environment needs to be copied, we swap their
memory pointers followed by reassigning the context through the cuSPARSE API.
Algorithm 1-C follows this logic in the “Swap pointers” procedure to remove the
copy overhead between x;,;; and y.

STORM uses its sparse-matrix builder utility to create the transitional matrix
A by state exploration for each successor state (s,) and assigns it as a row of
the matrix. Since these rows, depicting state transitions, are fixed, we propose
Algorithm 1-A as an extension of the state exploration process. We introduce
the variable Viopunks(4) where each 4 is a pointer to memory containing rows
of matrix A. Since all memory copying is asynchronous, the control is handed
back to the API as soon as the command is executed, ensuring that the delay
in the state exploration is minimal. Algorithm 1-B shows how we efficiently
rearrange the pointers inside a contiguous memory, once all data is copied inside
the memory at the multiplication point.

Recalling Fig. 1a, all instructions to the GPU are directed by the CPU. When
the number of states and choices increase, the number of copy pointers and the
instructions required to rearrange them also increases, as shown in Fig. 5a. This
sequential execution is catered by utilizing the maximum streams, since there is
no limitation on the parallel copy operation internally in the device.

To optimize the copying speeds over the PCle, it is typically recommended
to have large copy sizes [33] by batching small transfers together. We introduced
a limit C'pp4p in Algorithm 1-A to ensure that the copy process groups multiple
rows of matrix A together. The number of rows is increased at every copy to
ensure that the algorithm adapts as the state-space increases to accommodate
the size of the end transitional matrix. Fig. 5b shows a significant performance
upgrade after the application of both of the optimization strategies.
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Copy (Host -~ Device)
Copy ( Device -» Host)

MemCpy( HtoD )
MemCpy( DioH ) Copy ( Device — Device)
MemCpy( DtoD )
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Stream 1 Stream 1 |
Stream 2 Stream 2 I

Stream (T-1) Stream (T-1) D D

stream T Stream T 1]

(a) Sequential reassemble and copy (b) Reassemble and copy with multiple
streams and batched data

Fig. 5: Illustration of Nvidia’s Visual Profiler output showing memory copy and
SpMV compute

3.5 Profile and Evaluate

Profiling and evaluation is an essential step after each optimization strategy is
implemented. We use the NVIDIA Visual Profiler [16] for GPUs with compute
capability of less than 8.0 and NVIDIA compute [15] for compute capability
greater than or equal to 8.0. Another important factor in evaluating the quality
of optimization is the occupancy of the GPU, i.e., the amount of processor usage
by the hardware [22]. The quality of an optimization is proportional to the
occupancy per streaming multiprocessors (SMs).

For our experiments, we selected the same test vectors that were previously
used to evaluate the PRISM model checker [29]. We focus on the NAND and
Herman case studies because they provide a wide range of test vectors with
varying size.

4 Experimental Evaluation

The standard STORM multiplier y = Multiplier(A, x;nit, N) takes three param-
eters as input: (1) a sparse-matrix A, (2) a dense initial state vector x;,;; and
(3) number of times to perform multiplication N. The multiplier returns a dense
vector y depicting step-bounded readability probability of each state. For the
implementation of the SpMV, we randomized the dense vectors in the range
[0,1] and increased the value of N.

We introduce the term “Complete CUDA” to collectively represent the basic
optimization techniques and hiding the memory transfers inside the state-space
exploration. The experiments are performed on three different combinations of
CPUs and GPUs each scaling in performance to accommodate technological
advances within each generation. The combinations are as follows:

1. Intel i7-7700 CPU @ 2.8GHz with GTX 1050 PClIe 3rd Gen x8 lane;
2. Intel i7-6700 CPU @ 3.4GHz with GTX 1080 PCle 3rd Gen x16 lane;
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3. AMD RYZEN 3970x 32-core @Q 3.7GHz with RTX 3090 PCle 4th Gen x16

lane.

We present the results of combination 2 here, and more details for 1 and 3 can
be found in [27].

All systems run the standard Ubuntu 18.04 LTS with CUDA toolkit 11.2. We
compare our SpMV implementation with the STORM built-in multiplier function,
and the cuSPARSE implementation with the CUSP implementation. All tests are
conducted assuming a double precision with the multiplier count = 2, making the
worst-case scenario for GPUs due to such models’ requirements for low latency.
We provide the results for each benchmark as the value of NV is increased. Finally,
we illustrate the difference between the cuSPARSE and CUSP.

4.1 NAND Case Study

This case study [35] concerns NAND multiplexing, which is a technique for
ensuring reliable computation using unreliable devices. There are two variables
that change the dynamics of the model: (1) N is the number of inputs in each
bundle and (2) K is the number of restorative stages. The experimental results
are depicted in Table 2 and Fig. 6a.

Table 2: NAND: comparing optimizations with STORM multiplier

NAND Size of Matrix |Sparsity|Basic|Complete|Storm Speed-up
constants CUDA| CUDA factor
N K % mS mS mS %
20 1 78332 x 78332 99.99802 | 0.382 0.27 3.1045 11.5
20 2 154942 x 154942 99.999001| 0.69 0.424 4.019 10
200 3 231552 x 231552 | 99.99933 | 0.92 0.514 6.208 12
20| 4 308162 x 308162 99.9995 | 1.21 0.69 8.2 11.9
40 1 1004862 x 1004862 |99.99984 | 3.61 1.769 30.594 17.3
40 2 2003082 x 2003082 |99.99992 | 6.91 3.391 54.716 16.1
40 3 3001302 x 3001302 |99.99995 | 10.3 5.002 82.158 16.4
40| 4 3999522 x 3999522 | 99.99996 | 13.68 6.66 112.76 17
60 1 4717592 x 4717592 |99.99997 | 16.48 7.861 |131.434 16.7
60 2 9420422 x 9420422 [99.999983| 43.33 | 15.614 |265.969 17
60| 3 14123252 x 14123252|99.999989|64.581| 23.296 |392.483 16.9
60| 4 18826082 x 18826082(99.999992| 79.22 | 31.142 [528.142 17

The measurements against the STORM implementation show speed-up of 16
times on average with the Complete CUDA GPU implementation. In smaller
matrices, we observe the basic optimization strategy giving similar results as the
complete optimizations. This is expected since the latency is less significant with
smaller matrices.



SpMV multiplication using GPUs 13

Table 3: Herman: comparing optimizations with STORM multiplier

Model Matrix Sparsity| Basic [Complete| Storm |[Speed-up

Name Size CUDA| CUDA factor
% mS mS mS %

Herman3 8x 8 56.25 0.2 0.202 0.0015 0.007

Herman5b 32 x 32 76.17 0.2 0.217 0.0025 0.012

Herman7 | 128 x 128 86.64 0.21 0.197 0.0070 0.036
Herman9 | 512 x 512 92.5 0.21 0.209 0.525 2.513
Hermanll| 2048 x 2048 95.8 0.31 0.242 4.624 19.11
Hermanl3| 8192 x 8192 97.62 1.83 0.603 16.026 26.58
Herman15|32768 x 32768| 98.66 | 15.19 3.073  [125.495| 35.12

4.2 Herman Case Study

The self-stabilizing algorithm Herman [30] operates synchronously in an oriented
ring, where the communication is unidirectional in the ring. In this protocol, the
number of processes in the ring must be odd. Our choice of Herman stems from
the fact that it exhibits lower sparsity in comparison to other benchmark models
and thus leads to a faster multiplication but this speed-up is compromised due
to an increase in the memory copy operations from the host to the device. We
also evaluate how using GPUs to solve small matrix-vector multiplication is
counter-intuitive since the setup cost of matrix multiplication is greater than
the complete multiplication on CPU. Execution times can be seen in Table 3
and comparisons are illustrated in Fig.6b.

For the Herman model, the proposed approach initially performs worse than
the original STORM multiplier. We observe a minimum time of 0.2 ms for all
matrices and since the STORM multiplier can handle matrices of up to 512 x 512
in under 0.5 ms, it significantly decreases the speed-up factor but with models
greater than 2048 x 2048 we see an up to 35 times increase in performance in
the proposed approach.

20,1 202 203 204 40,1 402 403 404 60,1 602 603 604
NAND constants (N,K) 0

Herman3 HermanS Herman7 ~Herman9 Hermanll Hermanl3 HermanlS

(a) Speed-up factor in NAND model. (b) Speed-up factor in Herman model.

Fig. 6: Results from NAND and Herman model.
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Unlike the NAND model, which on average saw twice the performance gain
when comparing the basic with Complete CUDA optimizations, as shown in
Fig. 7a, we see a higher difference in favor of complete optimizations in the Her-
man model. This is due to lower sparsity, which creates a higher cost for memory
copying if the transfer time is not included in the state-space exploration.

4.3 Increasing Value of N

All of the above observations have been made assuming a value of N = 2 denot-
ing that the matrix-vector multiplication is performed twice before termination.
With an increased value of N, the cost of performing SpMV multiplication once

can be computed as ‘
Ratio, = % n (7)
Timen—n
with n being the multiplication count. We observe from Table 4, that the time
taken for a single SpMV multiplication instance reduces with an increased value
of N in all models. This behavior, as illustrated in Fig. 7b, is expected since
GPUs traditionally use such tactics to compensate for the initial latency caused

by memory transfers [22].

Table 4: Execution time of SpMV multiplication for each value of N

Multiplication Count - N

Name 1 | 4] 6 | 10 | 50 | 100
Herman3 [ 183 [56.75] 40.833 | 28.7 [ 15.46 [ 13.78
Herman5 | 180 | 55.5 | 41.667 | 29.9 [ 15.96 | 14.24
Herman7 | 184 | 61 [ 41.67 | 29.5 [ 16.12 | 13.73
Herman9 | 188 | 62.5 | 40.167 | 29.2 [ 15.66 | 13.84
Hermanll | 214 | 69 | 545 [ 41.8 [ 26.12 | 24.52
Herman13 [ 467 [207.5[ 177.3 [ 155 |127.34 | 122.92
Herman15 [ 2633 | 1361 [ 1219.67 [ 1107.4 | 968.86 | 951.78

4.4 CUSP vs cuSPARSE

The CUSP vs cuSPARSE kernel comparison is performed for different matrices
and Table 5 shows a steady lag that CUSP maintains behind the cuSPARSE
library. We found that the resource utilization per streaming multiprocessor in
the cuSPARSE API resulted in a lower time to compute a kernel of the same
dimension and value as compared to the CUSP implementation.

4.5 Comparing GPUs

We also compared hardware on the basis of generation with the RTX-3090 be-
ing the top-of-the-line GPU using PCle 4.0 x16 lanes followed by the GTX-1080
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Time (ms)
Ratio: (Basic / Complete)
°

1 4 6 10

{\\_\@’ {\C\s‘ 0 x’@ @'\5& @;\Kﬁb «\“’(\@ MU\rl:’H(AT\UNLOUNHN)
(a) Basic and complete optimizations (b) Ratio, of each model with in-
with the ratio of Basic/complete. creased value of N.

Fig. 7: Comparison results of optimizations and increased N.

Table 5: Kernel duration for the Herman model over CUSP and cuSPARSE
| Model [CUSP time[cuSPARSE time] _ST3F

cuSPARSE
Herman3 18.23 10.312 1.768
Hermanb 24.29 10.27 2.365
Herman7 32.56 9.69 3.36
Herman9 107.2 10.03 10.69
Hermanll 437.7 22.65 19.32
Herman13 2836 123.44 22.98
Hermanl5b 19720 956.78 20.61

and GTX-1050 (x8 lane). From Table 6, we find that the RTX-3090 performs
up to 228% faster on matrices that require a higher memory bandwidth, sim-
ilar to those of the Herman model, while on high sparsity matrices we see an
improvement of 137.5%.

For our results, we compare the output probabilities with the ones obtained
via STORM’s multiplier and found both of them to be identical. The results
identify that for small matrices, the GPU implementation is not recommended
since the time taken for such SpMV multiplications on CPU was observed to be
less than 100 microseconds. On the other hand, we see a significant performance
gain of up to 80 times on high-end GPUs with models that have large matrices
and high transitions per state, and up to 20 times on average in highly sparse
matrices. Furthermore, when applying the multiplication on the sparse-matrices
with only basic optimization techniques, we observe that, on average, 83% of the
time is spent on memory transfers while this ratio reduces to 65% when memory
copy latency is hidden inside the state-space exploration. This is due to CUDA’s
ability to allow multiple fast streams when copying data within the device as
compared to copies from the host. Finally, we see that older GPU generations
also provide speed-ups of up to 8 times in comparison to the STORM multiplier
on CPU.
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Table 6: Speed-up factor over different generations on Nand and Herman model

Model RTX-3090 GTX-1080 GTX-1050
(Gen.4 - 16 Lane)|(Gen.3 - 16 Lane)|(Gen.3 - 8 Lane)
NAND - 20,1 4.905 11.5 5.344
NAND - 20,2 9.871 10 6.205
NAND - 20,3 8.742 12 6.589
NAND - 20,4 15.75 11.9 7.059
NAND - 40,1 15.16 17.3 8.443
NAND - 40,2 17.56 16.1 8.352
NAND - 40,3 19.13 16.4 8.006
NAND - 40,4 19.16 17 8.090
NAND - 60,1 19.77 16.7 7.926
NAND - 60,2 21.60 17 7.846
NAND - 60,3 22.11 16.9 7.927
NAND - 60,4 22.63 17 8.249
Herman3 0.031 0.007 0.05
Herman5 0.061 0.012 0.108
Herman7 0.143 0.036 0.34
Herman9 0.73 2.513 2.67
Hermanll 7.21 19.11 12.2
Hermanl13 37.49 26.58 16.08
Herman15 80.31 35.12 18.59

5 Conclusion

This paper has presented a GPU-based methodology to optimize sparse-matrix
vector multiplications for probabilistic model checking. Significant improvements
in performance are achieved by enabling optimizations on the memory transfer
step and by using built-in CUDA APIs. Several aspects of the proposed approach
are studied. Experiments revealed a speed up of 16 times over the state-of-the-
art.

All GPU assisted applications are limited by their global memory utiliza-
tion. As state-of-the-art hardware crams maximum 80 Gigabytes of memory, the
next step towards the GPU aided model checkers will be to cater for matrix-
vector multiplications where the size of the variables exceed the limit of the GPU
memory. Abstraction techniques to reduce the size of model are generally applied
to merge multiple states with indistinguishable behaviour. Techniques such as
bisimulation minimization could either be applied in the GPU or output of the
CPU-based implementation can be imported and merged in the GPU memory.
Extension to a more generic problem set, such as nested bounded probabilistic
model checking along with cross-platform comparison with other hardware ac-
celerators and implementation of simulation algorithms such as statistical model
checking can be explored as possible future avenues. Another interesting future
direction will be to implement the state-space exploration inside the GPU. Since
this pre-processing step takes a significant amount of time, GPU-based explo-
ration can introduce a parallel implementation to find successor states. This
approach will also avoid repeated memory movement between the host and the
GPU; thus it will inherently preempt the primary latency factor.
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