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Abstract The objective of NASA’s Small Aircraft Transportation System (SATS) Concept
of Operations (ConOps) is to facilitate high volume operation of advanced small aircraft oper-
ating in non-towered, non-radar airports. This system can provide improved and accessible
air travel at a lower cost. Given the safety-critical nature of SATS, its analysis accuracy is
extremely important. However, the commonly used analysis techniques, like pilot/computer
simulation and traditional model checking, do not ascertain an error-free and complete ver-
ification of SATS due to the wide range of possibilities involved in SATS or the inability
to capture the randomized and unpredictable aspects of the SATS ConOps environment in
their models. Another limitation of these studies is that a limited speed range was used in
the analysis. To overcome these limitations, we propose to formulate the SATS ConOps as
a fully synchronous and probabilistic model, i.e., SATS-SMA, that supports simultaneously
moving aircraft. The distinguishing features of our work include the preservation of safety
of aircraft while providing a precise timing model, which is closer to reality compared to
the previous hybrid analyses. Important insights related to the aircraft take-off and landing
operations during the instrument meteorological conditions are also presented.
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1 Introduction

There has always been an increasing demand [30] for an innovative technology in the U.S.
National Airspace System that leads to a reduction in the cost of air travel while meeting
the stringent safety requirements [21]. One of the major threats to air travel safety is the
congestion at major airports and there have been numerous calls to reduce airport traffic
since the 9/11 incident [43]. As a solution to these requirements, Small Aircraft Transporta-
tion System (SATS) [56] was proposed by National Aeronautics and Space Administration
(NASA), Federal Aviation Administration, and the National Consortium for Aviation Mobil-
ity. SATS has the capability to reduce travel times [21] by availing the 3400 under-utilized
small community airports in the U.S. that are not equipped with control towers or radar cov-
erage [56]. SATS aircraft include affordable and high performance small aircraft, such as the
single-engine, multi-engine (piston or turbo-powered), and jet aircraft with advanced avionic
equipment [21]. The NextGen communication and navigation capabilities will be incorpo-
rated by utilizing the Ground Positioning System/Wide Area Augmentation System to reduce
infrastructural costs [56]. SATS utilizes advanced guidance display systems, such as Synthetic
Vision System, Highway-In-The-Sky, Flight Director, Enhanced Vision System, and Head-
Up Displays, to aid in low visibility conditions [56]. These systems can reduce pilot workload
and improve accuracy of the approach as well as situational awareness of the pilot [35].
During Instrument Meteorological Conditions (IMC), non-towered, non-radar airports tra-
ditionally rely on procedural separation, i.e., allowing only one aircraft to get access to the
airport airspace at a given time [8]. This practice decreases the potential airport throughput
[44] to the extent where the rate of operations can become as low as three landings per hour
[53]. The SATS vision includes Higher Volume Operations (HVO), which enables multiple
operations inside the SATS airspace, even during IMC [30] with a goal of increasing the
capacity to 15-30 operations per hour [53].

An increase in capacity of the SATS airspace can lead to the increase in risk of collision
with other aircraft in the SATS airspace. Therefore, it becomes necessary to ensure safety
of aircraft through appropriate separation and sequencing. Various simulation environments
[17,17,18,25,48,56,58,59] and formal methods [14,32-34,44-46,55] have been utilized
to validate SATS Concept of Operations (ConOps). However, in all the existing methods
of validation, the main focus is on the procedures and compliance with transition rules.
With these limited considerations, any model with appropriate conditions can verify that the
procedures are enough for the assurance of safe separation between the aircraft. However,
there may be a number of random factors affecting the results of the application of procedures
in the real world. For instance, the uncertainty of aircraft and pilot performance can lead to
unpredictable situations of SATS procedures, such as assurance of separation between two
aircraft while transitioning between zones [22]. The pilot’s performance depends on his/her
decision making skills, experience and situational awareness. Thus, it cannot be quantified or
assumed to be same in all situations. Pilot’s unexpected responses in some situations can lead
to severe accident conditions, such as the collision of two aircraft over Uberlingen, Germany
in 2002 [31]. Another random factor is the missed approach transition. The probability of a
missed approach transition may increase due to several factors, such as bad weather conditions
leading to low visibility at decision height, large density of incoming air traffic, large number
of aircraft taxiing from runway and pilot error [24]. Due to these uncertainties involved,
traditional model checking cannot ascertain a realistic verification of SATS.

In order to increase the robustness of the system [57] by including the probabilistic con-
siderations of SATS in its analysis and safety verification, we propose to use probabilistic
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model checking techniques [6, 16] for the verification of the SATS ConOps using the abstract
timing from our previous work [51]. Particularly, we developed a fully synchronous Discrete-
Time Markov Chain (DTMC) model of the SATS ConOps and then verified the safety and
performance properties of SATS, including the landing and take-off procedures, using the
probabilistic model checker PRISM [39]. However, all aircraft were assumed to have a Missed
Approach Holding Fix (MAHF) of right side and thus the alternating assignment of MAHF
was not modeled. Hence, the analysis could not validate some critical safety scenarios, such
as two aircraft coming from the opposite sides of the base segment of the Self Controlled
Area (SCA). Moreover, the aircraft kinematics were abstracted to a level that it could cover
each zone of the SCA in one time unit. Such an abstract timing could not provide realistic
information about time for landing or potential throughput of the airport. In this paper, we
overcome these limitations by incorporating the following details in the DTMC model of
SATS ConOps presented in [51]:

— Both the left and right sides of the SATS airspace have been modeled in PRISM and thus
the assignment of alternate MAHF is enabled.

— The abstract timing is refined by considering zone distances and kinematics of SATS air-
craft. For this purpose, we evaluated the time spent in each zone based on the speed profile
of the aircraft by solving the corresponding partial differential equations in MATLAB.

— The modeling approach for a generalized SATS aircraft is presented, i.e., any SATS
aircraft can be modeled by simply updating the variables representing time to cover a
specific zone based on the aircraft speed.

We show that our improved DTMC is free of deadlocks. Moreover, we present the refined
safety properties with the improved timing model. We also analyze the expected time for
landing and expected number of departure operations in a fixed time. The analysis of two
SATS aircraft, Learjet45 and Cessnal72 [13], is performed for illustration.

Open-Source Contributions: We have made our PRISM model and properties and MATLAB
timing analysis codes available as open-source [50] for download to facilitate researchers
and verification engineers for further developments and analysis of the SATS ConOps. It can
also provide key insights into the various SATS aircraft through trivial modifications in speed
ranges.

The rest of the paper is organized as follows: Sect. 2 presents the state-of-the-art SATS analysis
techniques and their limitations. Section 3 provides an introduction to the SATS operational
concept and the PRISM model checker to facilitate the understanding of the rest of the paper.
Section 4 explains the proposed methodology along with the main challenges that we faced
while modeling the proposed fully synchronous system in PRISM. Section 5 presents the
probabilistic verification results of the two SATS aircraft and the novel observations made.
Finally, Sect. 6 concludes this paper.

2 Related Work

Traditionally, the analysis of SATS HVO has been done mainly by simulation using computer
programs, in which pilots operate aircraft modules. These simulations develop the human-
in-the-loop scenarios for the analysis of Air Traffic Control (ATC) in the actual operational
environment to check the feasibility of SATS operations [25] and to assess the pilot’s workload
and situational awareness while performing an HVO task [59]. The subjective assessment
of pilot’s situational awareness, traffic awareness, and navigation guidance awareness was
performed for SATS HVO as well as off-nominal scenarios [17]. Moreover, simulations
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were performed on a General Aviation simulator and flight tests were conducted to verify
the effectiveness and efficient utilization of SATS HVO by pilots [58]. Proof-of-concept
simulation studies [56] performed at the Federal Aviation Administration William J. Hughes
Technical Center verified that the ATC can accept the SATS procedures, support HVO, and
is able to control SATS traffic into and out of the SCA. Similarly, in [18,59], the authors
verified the conflict detection capabilities of HVO procedures in NASA Langley Research
Center’s Air Traffic Operation Lab and also performed flight tests on the NASA Cirrus-SR/22
aircraft. These simulations used different simulation environments and flight tests on SATS
aircraft and verified that the SATS HVO is feasible with respect to capacity management
and pilot acceptability of the procedures. Recently, a genetic algorithm has been developed
using the Microsoft VC++ 6.0 environment in [4] to optimize the SATS landing sequence
for multiple aircraft and to make it conflict-free while reducing delays. In addition to the
nominal conditions, off-nominal situations were also simulated using the same platform in
[17], to check the resulting effect on the pilot’s situational awareness.

The SATS goal of increased number of operations in the airport was also verified through
simulation. A Monte-Carlo analysis shows that by utilizing the SATS HVO, the throughput
of a SATS airport can be increased up to 3—4 times the normal throughput of a non-towered,
non-radar airport [19]. Specifically, this study shows the saturation point of SATS HVO to
be 26 operations per hour, after which delays in operation increase because of queuing. The
capacity of a SATS airport depends on its Airport Management Module (AMM), which acts
as a sequencer of aircraft, and on the types of aircraft approaching, as the speed differences
can cause delays and thus reduce capacity [8]. The Multi-Purpose Aircraft Simulation toolkit
was used to simulate scenarios with different aircraft types to compare the capacity of an
aircraft using procedural separation with that of AMM [48]. This simulation showed that
AMM can provide significant reductions in delays during high arrival rates of the aircraft
into the SCA and thus improve the capacity of the airport.

A thorough piloted simulation of all the possible conditions of the SATS ConOps and varying
kinematics of each SATS aircraft in the airport requires a very large number of test runs,
which is time-consuming and requires a significant amount of computational power. Thus,
exhaustive simulation with precise aircraft kinematics is impractical for validation of SATS.
Resultantly, Monte-Carlo simulations, as in [19], are usually performed to analyze the SATS
ConOps. However, they are based on repeated random sampling and thus lack exhaustiveness
[23] in terms of coverage of all the possible states in which SATS aircraft can go into. A
random selection of test vectors cannot completely validate SATS ConOps as only some
specific points in the input space are covered and there is always a chance of missing the input
conditions that lead to an error [42]. Moreover, the results largely depend on the choice of the
test scenario. For example, each aircraft considered in simulation will exhibit a different speed
and performance affecting its spacing from other aircraft. Moreover, it may not be possible
to consider or even foresee all corner cases. Consequently, simulation-based verification of
the SATS ConOps is incomplete with respect to error detection, i.e., all errors in the system
cannot be guaranteed to be detected, which is a severe limitation considering the safety-critical
nature of passenger aircraft.

In order to have a complete analysis, automatic parameterized verification of hybrid automata
was employed to verify the properties of SATS ConOps in [32,33]. Model-checking principles
were used in this analysis, which considered position of the aircraft as a continuous variable
modeled either as a timer [32] or as arectangular differential inclusion [33]. This methodology
allows verification regardless of the number of aircraft but a major limitation of this work
is that the methodology requires the user to specify inductive invariants that are sufficient
to establish safety. While the process of finding inductive invariants sufficient to establish
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safety of the SATS ConOps has been successfully automated through an extension of invisible
invariants [2], this is an incomplete (heuristic) method, that in general may fail to find such
inductive invariants [34]. The analysis and formal verification of the timing constraints of
SATS was done in [15] using Linear Real-Time Logic. Exhaustive state exploration using
the Prototype Verification System (PVS) [47] has been performed extensively for the safety
verification of the SATS ConOps [22,44,45]. In particular, it has been formally verified that
SATS rules and procedures can provide minimum required spacing between two and more
aircraft. Umeno et al. [55] constructed an I/O automata framework to prove the properties
of the system in PVS. A hybrid modeling technique [14] has also been developed in PVS
that proves separation properties by incorporating geometry of the airport and speed range
of the aircraft. In [46], the PVS tool Besc was used for similar hybrid modeling. It is worth
mentioning that hybrid modeling is an improvement to the verification of the transition rules
only. A limitation of these studies is that they used a limited speed range that excludes the case
where the two aircraft approaching the runway have a large difference in speeds. Another
major limitation of these works is that they do not consider the randomized and unpredictable
aspects of aircraft transitions, landing, and takeoff.

Formal verification of safety features of related terminal airspaces has also been carried
out, which could be adapted for the analysis of SATS. For instance, the Runway Safety
Monitor (RSM) [26], which is a protocol by NASA and Lockheed Martin to detect runway
incidents, was formally modeled using Petri nets [54]. In this study, exhaustive verification
of the RSM algorithm was performed using the SMART (Stochastic and Model-checking
Analyzer for Reliability and Timing) tool to detect all scenarios of incursion. Attempts to
verify equivalent models of RSM using the symbolic model checker NuSMV and the explicit
model checker SPIN were shown to have failed to build the state-space due to excessive
memory consumption. Probabilistic models in aircraft safety studies were incorporated to
represent uncertainty for verifying the airborne collision avoidance system, ACAS X [57].
The analysis of ACAS X system using a parallel Bayesian model checking engine was shown
to be limited in resolution. Hence, the system was discretized and the controller was modeled
as a MDP. PCTL model checking was performed for the verification of its properties.

3 Preliminaries

In this section, we present an overview of the SATS operational concept and the PRISM
model checker. Table 1 defines all the acronyms used in the paper.

3.1 SATS ConOps

The ConOps for SATS is primarily a set of rules and procedures to be followed by an aircraft
inside a volume surrounding the airport, known as the SCA. A ground-based automated
system, known as the AMM, performs the job of sequencing the aircraft entering the SCA,
while the pilots are responsible for their separation [11,13,45]. The SATS HVO concept
allows a maximum of 4 aircraft at a time inside the SCA [44]. The SCA is typically taken
as aregion with 12-15 Nautical Miles (NM) radius and 3000 feet above the ground [13, 14].
It is arranged in a T structure, consisting of a base, an intermediate and a final zone. It is
divided into a number of segments and fixes: Initial Arrival Fixes (IAFs), Intermediate Fix
(IF), Final Approach Fix (FAF), and Departure Fixes (DFs), as shown in Fig. 1a. The IAFs
serve as the holding fix when an aircraft enters the SCA, and as the MAHF when an aircraft
misses landing and flies back to the IAF via the missed approach path.
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Table 1 Nomenclature used in

Al
the paper cronym

Definition

SATS
ConOps
HVO
IMC

SATS-SMA

NASA
MAHF
SCA
ATC
AMM
PVS
NM
IAF
IAF-R
IAF-L
IF

FAF
DF
DF-R
DF-L
RT
DTMC(s)
CTMC(s)
MDP(s)
PA

PTA

Small Aircraft Transportation System
Concept of operations

High volume operation

Instrument meteorological conditions
SATS-simultaneously moving aircraft
National Aeronautics and Space Administration
Missed approach holding fix

Self controlled area

Air traffic control

Airport management module
Prototype verification system
Nautical miles

Initial arrival fix

Initial arrival fix-right

Initial arrival fix-left

Intermediate fix

Final approach fix

Departure fix

Departure fix-right

Departure fix-left

Runway threshold

Discrete-time Markov chain(s)
Continuous-time Markov chain(s)
Markov decision process(es)
Probabilistic automata

Probabilistic timed automata

There are two types of entries into the SCA: vertical and lateral [14,46], as depicted in Fig. 1b.
In vertical entry, the aircraft has to hold at 3000 feet holding fix (IAF-R or IAF-L) unless it
can descend to the corresponding 2000 feet holding fix. It then moves to the base segment
(IAF to IF) if the transition conditions hold. On the other hand, in a lateral entry, the aircraft

&
<« o

Missed Approach Path

Z Vertical Entry
Lateral Entry
~ —

5000 feet

4000 feet
3000 feet
2000 feet

|

Runway

I1AF-L FAF IAF-R
IF

Fig. 1 Top and side views of the SCA depicting its fixes and segments, along with types of entries into the
SCA. a Top view of the SCA [22]. b Side view of the SCA [22]. (Color figure online)
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flies from the entry point to the base segment directly or through the 2000 feet holding fix.
Once the aircraft is in the base segment or 2000 feet holding fix, there is no dependency on its
type of entry. After base segment, the aircraft goes through the IF, FAF, and finally reaches
the runway under certain conditions. If an aircraft misses its landing due to any reason, it has
to follow the missed approach path to move to the IAF corresponding to its assigned MAHF,
as shown in Fig. la.

DFs are outside the SCA and under the ATC control. An aircraft ready to depart requests
ATC for clearance. After clearance, the departure operation starts at the runway and it moves
to the DF corresponding to its MAHF assignment. A safe distance of 5 or 10 NM has to be
maintained from the aircraft flying to the opposite or same DFs, respectively [22].

3.2 PRISM Model Checker

PRISM is a probabilistic model checker, i.e., a software tool for the formal modelling and
analysis of systems that exhibit random or probabilistic behaviour. It incorporates state-of-
the-art symbolic data structures and algorithms. It has been extensively applied to model and
analyze stochastic systems from a wide variety of application domains, including biological
systems [41], embedded control systems [37], communication [29], and security protocols
[9]. PRISM supports several types of probabilistic models, such as discrete-time Markov
chains, continuous-time Markov chains (CTMCs) [36], Markov decision processes (MDPs)
[49], probabilistic automata (PAs) [52], probabilistic timed automata (PTAs) [12] as well as
extensions of these models with rewards (or costs), referred to as (discrete- or continuous-
time) Markov reward models and priced PTA. The models of the systems are developed
using the PRISM language, which is a simple, state-based language based on Alur’s Reactive
Modules formalism [1]. The PRISM language primarily consists of modules and variables.
A model is composed of a parallel composition of a set of modules that can interact with
each other. A module consists of local variables and guarded commands. The values of these
variables at any given time represent the state of the modules and the guarded commands
mimic the behavior of the modules. The global state of the whole model is determined by
the local state of all modules. The syntax of a command is as follows:

[action] guard -> prob_1 : update_1l + ... + prob_n : update_n; (1)

where action is the optional synchronization label, guard is a predicate over all the
variables in the model (including those belonging to other modules), update represents
the new values of the variables in the module and prob represents a probability (or rate)
assigned to the corresponding transition, which the module can make if the guard is true.
In order to verify and analyze the behavior of a given system, the desired functionality has
to be expressed as a property in a suitable probabilistic logic using a property specification
language. The PRISM’s property specification language is based on temporal logic and
subsumes several well-known probabilistic temporal logics, including PCTL [28], CSL [3,
71, LTL [20], and PCTL* [5], as well as support for rewards (or costs) and quantitative
specifications. PCTL is used for specifying properties of DTMCs, MDPs, or PTAs; CSL is
an extension of PCTL for CTMCs; LTL and PCTL* can be used to specify properties of
DTMCs and MDPs (or untimed properties of CTMCs) [40].

The probabilistic operator P is used to reason about the probability of an event’s occurrence.
It can be used to verify bounded or quantitative properties. The bounded properties take the
form:
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P bound [ pathprop ] 2)

bound can be >=p, >p, <=p or <p, where p is a PRISM language expression evaluating to
adouble value in the range [0,1] and pathprop is a path property using temporal operators
X (next), U (until), F (eventually/future), G (always/globally), W (weak until), R (release) and
their complex combinations. The property mentioned in Code Listing 2 is true in a state s of
amodel if the probability that path property pathprop is satisfied by the paths from state s
meets the bound bound. The quantitative properties compute the actual probabilities, rather
than just verifying the bound, and take the form:

P =? [ pathprop ] (3)

The steady-state operator S and reward operator R [38] have similar forms [40].

4 Formal Modeling of SATS in PRISM

In this section, we first present our refinements to the SATS ConOps. Then, the main
challenges encountered in modeling the system in PRISM and our proposed solutions are
described.

4.1 Refinements to the Original SATS

Our proposed model of the SATS ConOps in the PRISM language overcomes some of
the limitations of the fully non-deterministic, asynchronous transition system presented by
Dowek et al. [22]. Before presenting the details of our DTMC model, we point out the
discrepancies in the existing algorithm and our proposed solution.

1. The Idle Effect: In a fully non-deterministic model, if multiple transitions are possible
at the same time, either one of them may be executed. In other words, only one non-
deterministic action is fired at a time. This means that in such a model of SATS, at each
time step, only one aircraft will move to the next zone while all the other aircraft hold
in their current zones, even if the conditions for their transitions are satisfied. Thus, one
aircraft could change zones several times while others remain idle [22]. Hence, such a
model is unrealistic, as it fails to depict the real scenario, where an aircraft cannot be idle
in the air [44].

2. Simultaneous Transitions: The lowest available altitude determination for an aircraft
executing a missed approach (Rule 12) [22] is a simultaneous transition, potentially
involving 2 aircraft, when the holding pattern at 3000 feet is occupied but 2000 feet is
available. In this case, the transition determines 3000 feet as the lowest available altitude
and forces the aircraft holding at 3000 feet to descend to the holding pattern at 2000
feet concurrently. This is a weakness of the formalization [22,44] because simultaneous
transitions are not possible in a fully non-deterministic model. If simultaneous transitions
are suppressed, a deadlock scenario will be created [22].

Our proposed refinement for both of the above weaknesses is to build a fully synchronous

model that allows concurrently moving aircraft. Hence, at each time step, all the aircraft are
allowed to proceed simultaneously if the conditions for their transition are fulfilled. More-
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over, such a model also facilitates simultaneous transitions in the lowest available altitude
determination.

4.2 Modeling SATS as a DTMC in PRISM

In order to realistically model the semantics of the communication between aircraft and
AMM, both aircraft and AMM should have different modules in PRISM. Unfortunately, there
is no direct way of changing a variable in a different module for only one probabilistic update
of acommand in the same time step. Using synchronization labels to synchronize all modules
over common actions, only a specific scenario can be modeled. Moreover, an important limit
on the use of global variables in PRISM is the fact that global variables are not editable on a
synchronized command [40]. PRISM detects this and reports an error if an attempt is made
to do so. Therefore, the main challenge is to achieve synchronization in simultaneous aircraft
movement whenever the guard conditions are satisfied, while incorporating probabilistic
updates from the SATS ConOps in the model. In order to cope with this challenge, we
modeled the system as fully synchronously parallel automata, as in [27], where the same
synchronization label t is assigned to each PRISM command in each module. In order to
allow simultaneous transitions, we ensure that at least one transition of each module is active
for each reachable state in our model to avoid deadlocks. Hence, in such a fully synchronous
model, all the aircraft move concurrently to the next respective zones whenever the conditions
are satisfied.

We formalize the SATS ConOps as a DTMC in the PRISM model checker [39] using a
refined timing model. Figure 2 depicts the possible transitions of the aircraft from one zone
to the next zone of the SCA. Our model ensures that after a landing aircraft has landed
safely, it unloads passengers of the current flight in the taxi state. Then, it loads passengers
of the next flight and is ready for departure. After departure, it reaches its destination and
the next time it becomes a landing aircraft for the SCA. Hence, the process of landing and
departure continues. The model consists of three major modules, i.e., aircraft, AMM,
and Probability mapping, and their interaction is shown in Fig. 3. The aircraft
module implements the transition rules inside the SCA. The state of the aircraft inside the
SCA is represented by the zone in which it is present, encoded as shown in Table 2, and the

Fig. 2 Possible transitions of the
SATS ConOps in zones of the
SCA [22]. (Color figure online)
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Fig. 3 PRISM modules along ]
with their local variables A('ng;]zf; > (sez’,wm'\gh f)

Probability

Mapping

(p_map_state)

Table 2 Encoding for zones of the SCA in aircraft module of PRISM [51]
Symbol Description Encoding
h3-R Holding at 3000 feet at right side 1
h3-L Holding at 3000 feet at left side 2
h2-R Holding at 2000 feet at right side 3
h2-L Holding at 2000 feet at left side 4
lez-R Lateral entry zone at right side 5
lez-L Lateral entry zone at left side 6
base-R Right segment of base (IAF-R to IF) 7
base-L Left segment of base (IAF-L to IF) 8
int Intermediate segment (IF to FAF) 9
fin Final segment (FAF to runway) 10
run Runway 11
maz-R Missed approach zone at right of base 12
maz-L Missed approach zone at left of base 13
taxi Taxi 14
dep-R Departure path towards right departure fix (DF-R) 15
dep-L Departure path towards left departure fix (DF-L) 16

total time spent count_time inside the zone. The AMM module models how the sequence
number seq and MAHF mahf are assigned to the aircraft. The complete information about
the aircraft will thus include the sequence number seq and MAHF mahf assigned by the
AMM and the current location zone and total time count_time in a zone of the aircraft.
The Probability mapping module allows updating a variable in a different module
for only one probabilistic update of a command in the same time step. It is required as a
major module because of the lack of expressiveness in PRISM.

4.2.1 Model of SATS Transition Rules and Procedures

In this paper, we consider two aircraft in the SCA. The modules aircraftl and
aircraft?2 in our formal model [50], corresponding to each aircraft, implement the rules
of the ConOps, i.e., under what conditions the aircraft moves from one zone to the next. The
current zone of the aircraft is represented by the state variables zonel and zone2. They
are modelled as integer variables with values in the range 0-16 according to the encoding
listed in Table 2, whereas the value O represents the ‘fly zone’ for an aircraft outside the SCA.
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For instance, vertical entry left procedure (Rule 1) [22] for aircraftl is modelled by the
following PRISM command:

[t] zonel=0 & mahfl=false & (fix_total_L+fix_total_MAHF_L)<2 &
approach_L=0 & zl1l3_total=0 & z6_total=0 & z2_total=0 -> (zonel’'=2);

“

where mahf1 represents the MAHF assigned to aircraftl, fix_total_L represents
the total number of aircraft at IAF-L, fix_total_MAHF_L represents the total number of
aircraft assigned to IAF-L as a MAHF and approach_L represents the number of aircraft
assigned to IAF-L as a MAHF on the approach. The variables z13_total, z6_total and
z2_total represent the total number of aircraft in the missed approach zone (left), lateral
entry zone (left) and 3000 feet holding fix (left), respectively. In our model [50], we used
formulas for compact representation of these conditions and to avoid repetition. The update
in the command shows that if all the guard conditions are satisfied, the aircraft proceeds to
the 3000 feet holding fix (left).

The modules are symmetric except that priority is assigned to aircraftl in case of simul-
taneous entry as well as departure. In addition to the simultaneous entry due to proposed
synchronous system, we also allow the aircraft to enter individually in order to cater for the
aircraft performance and pilot preferences. This is done by using the synchronization labels
tland t2 for aircraftl and aircraft2, respectively.

4.2.2 Model of the AMM

The AMM typically resides at airport ground and communicates with the aircraft via a data
link [13]. It grants permissions to the aircraft for entering the SCA [11,59] and assigns a
landing sequence and a MAHF side (right or left) to the aircraft. The landing sequence
numbers encode the leader information and also identify whether an aircraft is the first
aircraft in a specific zone of the SCA. The aircraft entering later thus follows the leader
during the transitions. If the entering aircraft is the first one in the sequence, then its MAHF
will be in the same side from which it is entering. Whereas, the next aircraft, with sequence
other than 1, will have the MAHF that is opposite to that of its leader.

We model the AMM as a separate module AMM in PRISM to represent the communication
with the aircraft. It has two state variables, i.e., seq and mahf, for each aircraft. For a
landing aircraft, seq represents the relative landing sequence number, such that the aircraft
with landing sequence n is the leader of the aircraft with landing sequence n+1, i.e., an
aircraft with sequence number 1 is the leader of the aircraft with sequence number 2. It
is modelled as an integer variable with values in the range 0—10. When an aircraft enters
the SCA, seq is assigned a new value calculated by the formula nextseq. This value is
calculated based on the number of the aircraft already in the landing zones of the SCA. In
case of a simultaneous entry by both aircraft, different sequence numbers are assigned to both
the aircraft, with priority to aircraftl. A new sequence number is also assigned when
an aircraft initiates a missed approach path and the sequence numbers of all other aircraft in
the landing zones of the SCA are decremented by one. Moreover, when an aircraft enters the
runway, the sequence numbers of all other aircraft in the SCA are again decremented by one.
When an aircraft moves to the taxi state, its sequence number becomes 0. For a departing
aircraft, seq represents the distance of the aircraft from the runway in nautical miles. It is
incremented by one in each time step when it is in one of the departure zones, until it becomes
10, where it is assumed to have left the SCA.
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The MAHF of an aircraft, represented by mah £, is a Boolean variable with t rue representing
right MAHF, and false representing left MAHF. It is assigned whenever an aircraft enters
the SCA. Moreover, it is re-assigned when an aircraft executes a missed path approach.

4.2.3 Timing Model

In our previous work [51], we assumed that the aircraft remains in a SCA zone for one
time unit and transitions to another zone take place whenever the conditions of transition are
satisfied. In this work, we propose the refinement of the abstract timing model, in which the
objective is to calculate the actual time taken by the aircraft in each zone during the landing
operation, and to determine the precise location of each aircraft. Thus, the time of an aircraft’s
stay in one zone may be more than one time unit depending on the aircraft’s speed and the
conditions of transition to the next zone.
During the landing operation, the speed of the aircraft decreases gradually in small steps, i.e.,
the aircraft first stabilizes in the new decreased speed and then the speed decreases further
as the aircraft moves forward. The conventional laws of kinematics are not applicable here
since the deceleration is not uniform. To incorporate the kinematics of aircraft, we consider
the speed profiles of two SATS aircraft, given in [13] for a Learjet45 and a Cessnal72 in
which the speed of the first one is slightly higher than the latter one. The distance between
runway threshold (RT) and IF is taken as 10 nautical miles [13] whereas the distance between
IAF and IF is taken as 5 nautical miles [22].
The speed of an aircraft remains constant in some parts of the SCA while it is decreasing
in other parts (R2, R4 in Learjet45 profile, and R3, RS in Cessnal72 profile, respectively),
as shown in Fig. 4. The representation of speed is not very straightforward, due to the fact
that the speed has been plotted against the traveled distance towards RT, instead of time [13].
This is because the actual time taken by an aircraft in a zone also depends on the satisfaction
of the conditions for transition from one zone to the next. In the regions of constant speed,
the time ¢ can be calculated by + = x /v, where x represents the distance and v represents the
speed. As mentioned earlier, the deceleration of the aircraft is not constant, which restricts us
from applying the laws of motion directly to these regions. We use differential equations to
represent the regions of non-uniform deceleration. For instance, let us take one representative
region, say R2 (in Fig. 4) in the Learjet45 speed profile whose speed decreases from initial
speed v to final speed vy, covering a distance of x = xp — x1 in time ¢.
If the slope of the speed—distance graph in region R2 is C = (v — v1)/(x2 — x1), then from
the straight line equation we can write the speed v as:
. V2 — V]
Xx=v=——x—x1)+ (®)]
X2 — X1
where x represents the distance covered and x is the time derivative of distance. The solution
to this differential equation after substitution of the boundary value condition x = x| at time
t = 0 (for specific region, instant at which speed has not declined), we get the following
expression for time:
1 In(Cx +b)
~ Cln(Cx; +b)

where b is a constant and can be defined as b = v; — Cx;. The resulting minimum time
required to cover each region for a symmetric SCA is presented in Tables 3 and 4 for a
Learjet45 and a Cessnal72, respectively. It can be observed that the fast aircraft Learjet45
requires less time as compared to Cessnal72 to reach RT because of its higher speed range.
The corresponding speed—time graphs are depicted in Fig. 5.

(6)
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Fig. 4 Speed profiles of the two types of SATS aircraft in base, intermediate and final zones of the SCA, Top

Learjet45, Bottom Cessnal72 [13]

Table 3 Minimum time required for a Learjet45 in base, intermediate and final zones of the SCA

Region SCA zone Distance (NM) Speed (knots) Time (s)
15-14NM Base 1 210 17.14
14-10NM Base 4 210-170 76.074
IF to FAF Intermediate 5 170 105.88
FAF to 3 NM Final 2 170-135 47.424
3NM to RT Final 3 135 80

Table 4 Minimum time required for a Cessnal72 in base, intermediate and final zones of the SCA

Region SCA zone Distance (NM) Speed (knots) Time (s)
15 NM to IF Base 5 110 163.63
IF to 7 NM Intermediate 3 110 98.18

7 NM to FAF Intermediate 2 110-90 72.24
FAF to 1 NM Final 4 90 160

1 NM to RT Final 1 90-65 46.86
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Fig. 5 Minimum time required in various regions in base, intermediate and final zones of the SCA for a
Learjet45 and a Cessnal72. Green Regionl, Blue Region2, Cyan Region3, Magenta Region4, Red RegionS5.
(Color figure online)

In this paper, we assume that one time step of PRISM is equivalent to one second. We keep
track of the time spent in a zone by using counters countl_time and count2_time for
aircraft]l and aircraft2, respectively, in our formal model. The counters are incremented at
each time step till the desired value corresponding to the region in Tables 3 and 4 is achieved.
When the desired value is reached for a specific zone, the conditions for the transition to
the next zone are checked. If the conditions are satisfied, the aircraft moves on to the next
zone and the counter is reset. If the conditions are not satisfied, the aircraft remains in the
same zone and the counter is incremented at each time step. This formalism allows us to use
the same counter for all zones of the SCA and thus save memory space to make the model
scalable. For instance, the counter in the intermediate zone for aircraftl is implemented as
follows:

[t] zonel=9 & countl_time < int_time ->

(countl_time’=min(countl_time+1, count_max)) ; 7)

where countl_time represents the time spent by aircraftl in its current zone and
int_time is the value for the desired time in intermediate zone from Tables 3 and 4
for a Learjet45 and a Cessnal72, respectively. The PRISM function min (i, j) returns the
minimum of the two values i and j, and is utilized to restrict the values within the maximum
value of the count count_max.

4.2.4 Randomness in Model

Since there is no direct way of changing a variable in a different module for only one prob-
abilistic update of a command in the same time step, we introduce an additional probability
mapping module for each probabilistic decision. For instance, consider an aircraft in the final
zone. Now it can either choose the missed approach path with a probability p_map or it
can continue landing and transit to the runway with probability 1-p_map. In case of the
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missed approach path, a new sequence number and MAHEF is to be assigned to the aircraft.
However, there is no change in its sequence number and MAHF if it proceeds to the runway.
We propose to use the probability mapping module, i.e., choose_p_map, which contains
a single state variable p_map_state of type integer and with two possible values: 0 and 1.
When the probability p_map is selected, p_map_state is set to 1, otherwise it is 0. This
is achieved by using the following command in PRISM:

[t] Guard -> p_map: (p_map_state’ = 1) + (l-p_map): (p_map_state’ = 0);

®)

It is important to note that instead of setting true as a guard, we use the conditions of
transition to the final zone, i.e., one step back condition as the guard [50]. This way, the
command does not execute on each time step. p_map_state is updated when the aircraft
enters the final zone and is ready to be used when checking conditions for the next transition
to runway or missed approach zone in the next time step.

The value of p_map_state is now used in such a way that the guard condition of
p_map_state=1 checks whether p_map is selected. For instance, in the AMM module,
the following command ensures that seql and mahf1 are updated as soon as it makes the
transition to zone 12:

(] Guard & p_map_state =1 — (seql’ = nextseq) & (mahf1 = nextmahf1);

4.2.5 Model Statistics

The model contains 5 local state variables for each aircraft. The aircraftl module con-
tains two local state variables: zonel and countl_time. The AMM_al module contains
two local state variables: seql and mahfl. The choose_p_mapl module has only one
local state variable, i.e., p_map_statel. There are no global variables in our model. The
model with abstract timing contains 67 formulas while the one with refined timing contains
68 formulas. The number of states and transitions are presented in Table 5. The complete
formalization took approximately 150 man hours.

5 Verification Results

With the improved timing model and inclusion of left MAHF, the model is verified deadlock
free using the PRISM property filter (exists, “deadlock”).This section presents
the safety and performance of the two types of aircraft by considering each type of aircraft
individually, i.e., all the traffic is by one aircraft.

Table 5 Statistics related to size

of the model Model statistics Abstract timing Refined timing

Learjet45 Cessnal72

Reachable states 508 275952 809114
Transitions 667 278666 813949
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5.1 Safety Properties

The safety verification is based on the number of aircraft in a zone and their separation from
other aircraft in other zones [44]. In our previous work [51], we assumed that an aircraft
covers a SCA zone in one time unit and thus two landing aircraft were considered at risk
of collision when they were in the same zone. Moreover, only right side of the SCA was
considered. With the refined timing model and consideration of both sides of the SCA, we
refine the safety properties accordingly. According to the new model, two landing aircraft will
collide when they are at the same location in the corresponding zones. These zones include
the approach, final approach, missed approach and runway zones. Based on the refined model,
explained in Sect. 4, the location of the two landing aircraft, aircraftl and aircraft2, is tracked
by the counter variables count1_time and count2_time, respectively. Hence, we label
the state of collision 1and_danger as follows:

label “land_danger” = ((zonel=7 & zone2=8) | (zonel=9 & zone2=9)
|(zonel:10 & zone2=10)|(zonel=11 & zone2=11)
| (zonel=12 & zone2=13)) & (countl_time=count2_time); (9)

The precise locations of the departing aircraft are represented by the variables seqgl and
seq?. Aircraft on opposite departure zones must be safely separated by at least 3 NM. Thus,
they are at risk when they are on the opposite departure zones and the absolute difference of
seql and seq? is less than 3 NM. Using the definition of absolute value, we label this state
dep_danger as follows:

label “dep_danger” = (zonel=15 & zone2=16 & (seqgl-seqg2)>=0 &
(seqgl-seq2)<3)
| (zonel=15 & zone2=16 & (seqgl-seq2)<0 & -(seqgl-seqg2)<3 ); (10)

Using the above labels, we analyze safety in all paths in our model by computing the value
of the probability that any of the 1and_danger and dep_danger is satisfied in the future
by the paths from the initial state. This is achieved by the following property:

P=? [F “land_danger” | “dep_danger”]; (1

PRISM shows a result of 0, which confirms that no path leads to a collision in the landing or
departure zones from the initial state.

In order to confirm that the probability of occurrence of any of the 1and_danger and
dep_danger remains 0 for all reachable states, we formalize the property using filters as
follows:

filter (forall, P<=0 [ F “land _danger” | “dep_danger” ]); (12)

The property verifies to be true in PRISM and thus guarantees the safety in our model.
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5.2 Analysis of Landing and Departure Operations
5.2.1 Expected Time for Landing

We utilize the reachability reward [40] in PRISM to find the expected time taken for the
landing of an aircraft in our model. We assign a reward of unity to each state of the model
using the reward structure Landing_time and accumulate the rewards along a path until
the aircraft is in the taxi state. For instance, the reward-based property for aircraftl is
presented below:

R “Landing_time” = ? [ F “landingsl” 1; (13)

where landings1 is the label assigned to a state where aircraftl has landed.

Since very limited information is available on the probability of executing a missed approach
path p_map for SATS, we utilize the PRISM’s parametric model checking functionality to
perform the sensitivity analysis on the values of p_map from 0.001 to 0.7 with a step size
of 0.01. Figure 6a shows the expected time for landing of an aircraft with an abstract timing
model of one time step in each zone. The overall expected time for any aircraft to land is also
shown. The results after incorporation of precise timing are shown in Fig. 6b for both the
Cessnal72 and Learjet45 aircraft. The results depict an exponential increase in the expected
time taken for landing with p_map. Interestingly, the time for landing of Learjet45 exceeds the
overall time for landing of Cessnal72 at a probability of 0.65 approximately. Such interesting
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Fig. 6 Expected time for landing of aircraft. a Abstract timing. b Refined timing. (Color figure online)

@ Springer



M. U. Sardar et al.

results could not be obtained without the incorporation of aircraft kinematics. Moreover, the
values for the Learjet45 aircraft are smaller as compared to those of the Cessnal72 aircraft,
because of the faster speed profile of the Learjet45. Finally, as the probability of a missed
approach transition increases, the difference between the time for landing of both the aircraft
increases. Itis important to note that all these results have been obtained after the incorporation
of alternating MAHF.

5.2.2 Expected Number of Departures in a Fixed Time

We utilize the cumulative reward properties [40] to find the expected number of departures
of the aircraft in a fixed time in our model. In this case, a reward of unity is awarded to each
transition of departure and the rewards are accumulated until T time steps have elapsed. The
experiment is performed with T set to 100,000, which is large enough for the purpose of
comparative analysis between Cessnal72 and Learjet45 aircraft. Figures 7a and 7b show the
results with abstract and refined timing, respectively. As the probability of missed approach
transition increases, the difference between the number of departures of both the aircraft
decreases.

5.2.3 Verification Statistics

The properties file for abstract timing contains four labels while the one with refined timing
contains five labels. The verification is performed on a high-end server Intel Xeon processor
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Fig. 7 Expected number of departures in a fixed time. a Abstract timing. b Refined timing. (Color figure
online)
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Table 6 Timing statistics for landing (all times in seconds)

Timing statistics Abstract timing Refined timing

Learjet45 Cessnal72
Time for model construction 0.055-0.159 20.802-24.026 16.718-17.433
Time for model checking (landing) 0.002-0.035 26.379-117.803 102.231-515.239
Time for model checking (departure) 0.413-0.448 268.377-306.964 870.107-938.816

E5-2407 v2 (2.40GHz, 4 CPUs) with 32 GB of RAM. At a fixed value of the probability
of missed approach path p_map, the time for model checking for a Cessnal72 is generally
higher than that of a Learjet45. Moreover, it was noticed that time for model checking
generally increases with the increase in p_map. Finally, the time for model checking with
refined timing is higher than that of abstract timing. The summary of the timing is presented
in Table 6.

6 Conclusion

A number of random factors affect the operation of aircraft inside the SCA, such as pilot’s and
aircraft performance, entry of aircraft into the SCA and transitions between zones. Therefore,
we propose to use a probabilistic model checker, PRISM, to analyze the SATS ConOps
in this paper. A fully synchronous DTMC model of SATS is proposed. This model allows
simultaneously moving aircraft as opposed to the traditional non-deterministic, asynchronous
model in which only one aircraft moves at a time instant while others remain idle. Moreover,
the successful modeling and verification of the transition procedures for two aircraft with
different speed profiles, has verified the safety of aircraft in terms of safe separation in all
zones including take-off and landing. Such modeling has made a realistic analysis possible,
due to the incorporation of timing analysis. To the best of our knowledge, this is the first
reported analysis of SATS with an accurate timing model of the system, which is done with
actual speed ranges of the aircraft. The landing and departure operations of SATS are analyzed
with respect to the probability associated with the missed approach transition.

An important direction of future work is to carry out a detailed comparison of non-SATS
(one-in/one-out), SATS, and SATS-SMA. The consideration of both Cessnal72 and Learjet45
simultaneously along with 4 aircraft inside the SCA is also a very interesting future work.
Furthermore, we also plan to conduct the probabilistic analysis of the SATS ConOps under off-
nominal conditions [10,17,45], such as equipment malfunction and emergency situations,
using the parametric model checking functionality of PRISM, like it was utilized for the
analysis of probability of missed approach in this paper.
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