
A Hybrid Model Checking and Theorem Proving
based Approach for Fault Tree Analysis

Shahid Khan1,2, Waqar Ahmad1 and Osman Hasan1
1Sch. of Elect. Engg. and Computer Sc., National University of Sciences and Technology (NUST), Islamabad, Pakistan

2Software Modeling and Verification, RWTH Aachen UniversityAachen, Germany
{shahid.khan1,waqar.ahmad, osman.hasan}@seecs.nust.edu.pk

Abstract—Static fault trees (SFT)s are used for conducting
dependability analysis and thus are extensively utilized in var-
ious functional safety standards defined by the IEC and ISO
for automotive applications. Traditionally, SFTs are manually
developed by domain experts through a very cumbersome and
error prone process. Once the SFT is available, quantitative fault
tree analysis (FTA) is carried out using analytical approaches,
e.g., probabilistic model checking and theorem proving. While
the former is limited to exponential distributions, the latter can
analyze fault trees (FT)s with arbitrary probability distributions.
This paper proposes to combine model checking-based automatic
FT generation and theorem proving based FTA to ensure a more
rigorous and complete approach for FTA. The proposed approach
particularly utilizes 1) the XSAP safety assessment platform to
automatically generate SFTs from a functionally verified system
model and 2) the HOL4 theorem prover to analyze the XSAP-
generated SFTs. The usefulness of the approach is illustrated
using the case study of an automated vehicle system.

Index Terms—Reliability, Dependability, Formal Verification.

I. INTRODUCTION

Static fault tree (SFT) can be categorized as a modeling
language to carry out dependability studies of safety critical
systems [21]. It is a top-down approach where a fault tree
(FT) is developed for an undesired top level event (TLE).
Traditionally, SFTs are manually developed by reliability
engineers in consultation with domain experts. This process
is cumbersome because a new FT is developed for each TLE,
and a modification in system design leads to the repetition
of the whole process. Moreover, the process becomes more
error prone with the increase in the size of the FTs. SFTs
are either developed on paper or using computer-based tools,
e.g.,RELIASOFT and ISOGRAPH’S FAULTTREE+.

Fault tree analysis (FTA) is performed through simulation-
based or analytical methods. Simulation-based methods can
analyze FTs with arbitrary probability distributions. However,
simulation results lack hard guarantees and proving the fact
that simulation tools are bug free is nontrivial [11]. Alterna-
tively, formal methods, like binary decision diagrams (BDD)s,
probabilistic model checking and theorem proving [21] have
been used for FTA. While BDDs are quite efficient for SFT
analysis, they cannot compute exact times to failure, e.g., mean
time to first failure (MTTFF). Probabilistic model checking-

based analysis is limited to SFTs with exponential distributions
associated to their basic events [17].

Theorem proving-based FTA, on the other hand, leverages
upon the high expressiveness of higher-order logic (HOL)
and the inherent soundness of theorem proving. A HOL
formalization of probability theory [18] has been used to
formalize the foundational FT gates, e.g., AND, OR, VOT,
NAND, NOR, XOR, NOT [1]. This framework is used for the
analysis of many real-world applications, including satellite
solar arrays [2] and air traffic communication gateways [1].
This framework is further extended to dynamic fault trees
by formalizing dynamic gates including PAND, SPARE and
FDEP [15].

Automatic fault tree generation from system models is also
considered in the literature [5]. Classical approaches exist to
generate FTs from system descriptions captured through the
system modeling language (SysML) [19] or unified modeling
language (UML) [13]. Another prominent approach is to use
model checking [3] and satisfiability modulo theories [4] to
generate FTs from functionally verified system models. One
such approach is implemented in the XSAP tool [7] that is a
part of the COMPASS toolset [8]. This framework supports
quantitative analysis through probabilistic model checkers,
e.g., STORM [16]. It is used to solve many real-world ap-
plications including a wheel braking system [9].

Combined model checking and theorem proving-based FTA
approach for dynamic fault trees (DFTs) has also been con-
sidered in [14]. Higher-order logic is used to prove the equiv-
alence between DFTs and their reduced forms. The reduced
DFTs are then analyzed using the STORM model checker. Al-
though limited to SFTs at the moment, our proposed approach
extends the approach of [14] as it also caters for the formal
FT generation from a formally verified model.

Contribution. To the best of our knowledge, the literature on
theorem proving-based FTA does not consider the automatic
FT generation process from system description. This paper
addresses this gap through the following key contributions:

• presenting a novel approach to combine model checking
and theorem proving-based formal FTA approaches while
automating the process of FT generation,

• exemplifying the approach using a tool chain consisting
of the XSAP safety assessment platform and the HOL
theorem prover, and

• demonstrating our methodology on an automated vehicle.978-1-6654-6703-2/22/$31.00 ©2022 IEEE

II. PROPOSED APPROACH

The proposed approach requires 1) detailed system design
documents, 2) functional requirements and 3) a list of failure
modes of each system component. It mainly consists of four
major steps as depicted in Fig. 1.

Step 1: Model development. We utilize the aforementioned
system information, i.e., design and functional requirements,
to develop a formal model using the symbolic model verifier
(SMV) language. This is the input language of the NUXMV
model checker [10]. We also define the failure modes of
each component using the fault extension instructions (FEI)
language. This is the input language of the xSAP tool [7].
The SMV language provides a flexible modeling platform to
express both synchronous and asynchronous behaviors. The
SMV model is organized as modules while offering non-
deterministic variable assignments. We also consider the input
from domain experts in this step as they can provide insights
in the modeling process and facilitate in fault identification.

Step 2: Model validation. We validate the functionality of
the SMV model by verifying various temporal properties using
the nuXmv model checker [10]. The properties are described
either in linear temporal logic (LTL) or computational tree
logic (CTL). The property verification process also generates
counterexamples to debug the SMV model, as shown in Fig. 1
by a feedback dashed line back to the first step.

Step 3: FT generation. This step is performed using
XSAP [7], which has a rich fault library containing a compre-
hensive set of predefined failure modes, including different
variants of stuck at, random and conditional faults. XSAP
enables the FT generation by extending the SMV model with
the failure mode information described in the FEI.

Step 4: FT analysis. We construct a formal FT model
using the formalization of fault trees developed in the HOL4
theorem prover. At this step, we also annotate the FT with
the actual probability distributions provided in the system
design documents. The HOL formalization provides a library
of formally verified expressions of commonly used gates. The
library contains the formally verified probabilistic inclusion
exclusion (PIE) principle to verify the safety properties of the
given system at a desired time t.

III. CASE STUDY: AUTOMATED VEHICLE SYSTEM

We illustrate the effectiveness of our proposed approach
on an automated vehicle (AV) system [6], [20]. The AV is
divided into six blocks: 1) Hardware, 2) Communication,
3) Mechanical, 4) Software, 5) Human Interaction and 6)
Controller, depicted in Fig. 2 and described below:

Hardware models the electric and electronic system that
provides surrounding information to the vehicle. It consist
of two sub-blocks: 1) Hardware Integration and 2) Sensors.
The former receives the commands from the main controller
and negotiates these commands with the Sensors. The Sensors
block consists of reliability-wise redundant assemblies: 1) Pri-
mary Sensors and 2) Backup Sensors. The AV Hardware block
is equipped with many sensors, e.g., light detection and rang-
ing (LIDAR), radio detection and ranging (RADAR), global

positioning system (GPS), camera, wheel encoder, infrared
sensors and ultrasound. The Communication block interacts
with the neighboring vehicles (V2V) and other infrastructure
(V2X). The Mechanical block consists of three subsystems,
i.e., Steering system, Braking system and Conveyor system.
The Software block models the control algorithm and the data
processing unit that is responsible for autonomous naviga-
tion [12]. The Human Interaction block models the human-
computer interface of the vehicle. Finally, the Controller block
is responsible for issuing commands to other subsystems of
the AV. Failure modes of the hardware sensors are adapted
from [12], [22] and, along with some failure models of other
blocks, are summarized in Table I.

TABLE I: Few failure modes of automated vehicle system

Component Failure modes
LIDAR Laser malfunction. Mirror motor malfunction.

Position encoder failure. Over voltage. Short
circuit. Optical receiver damages.

Radar Electrical component failure. Induced noise.
Clutter effect.

Camera Foreign particles. Shock wave. Over voltage.
Short circuit. Vibration from rough terrain.

Communication V2V. V2X. Database. Degraded.
Mechanical Steering failure. Braking failure. Conveyor.

Software Data processing unit failure. Control algorithm
failure.

Human Interaction Wrong command generation
Wrong command interpretation.

IV. EXPERIMENTAL RESULTS

Modeling. We develop the SMV model by making a one-
to-one correspondence between SMV modules and the AV
architecture of Fig. 2. The SMV model also contains a module
named Monitor. This module is responsible for tracking the
commands and behavior of the components, i.e., whether the
component has complied to the command or not. According
to the formal model, the system proceeds in discrete steps and
at each instant, the system controller can query the health of
any component from the Monitor. The controller and Monitor
are assumed to be fault-free. Hence, they do not appear in the
resulting FTs. We specify the failure modes of our case study
in the FEI language. The resulting SMV model and all results
are available online 1

Validation. We verify the functional requirements on the
SMV model. One property that we considered is that the AV
can always communicate with other vehicles and the central
network. This property is formalized as :G(V2V & V2X).
Another interesting property checks the functioning status of
Hardware. In our SMV model, we have defined predicates to
indicate the status of HV components. Once such predicate is
is_HW_functional. Monitor module checks the status of
all hardware sensors and Hardware Integration; it resets the
flag to zero upon the failure of any sensor. Our SMV model
satisfies all these properties.

1https://github.com/shahid-khan/dft-bdmp/tree/master/2022-SMACD

https://github.com/shahid-khan/dft-bdmp/tree/master/2022-SMACD

Machine
Design

Functional
Properties

Failure
Modes

Domain
Expert

.SMV

.FEI

nuXMV

Model Checker

xSAP: Safety
Assessment

Platform

Counterexample

Faults
Library

Fault
Tree

 HOL4

PIE Principle

Fault Tree Gates

(AND, OR, NAND)

Formal
Model

Theorem Pover

Formally Verified Safety
Properties

Arbitrary
Probability

Distributions

Fig. 1: Proposed approach for formal FTA

System
Controller

System
Monitor

Control Algorithm

Software

Steering

Conveyor

Braking

Database

Degraded Communication

Wrong Command Generation

Wrong Command Interaction

Hardware

Hardware
Integeration

Infrared

Ultrasound

Communication

LIDAR

RADAR
GPS

Camera Vision

Wheel Encoder

Sensors

PrimaryBackup

Software

Human Interaction

Mechanical

Communication

Fig. 2: Automated vehicle case study

FT generation. After validation, we use the SMV model and
the failure modes information of the FEI file to generate an
extended SMV model in XSAP. Once the extended model is
available, we generate FTs for different TLEs. For illustration
purpose, we provide a FT generated by XSAP for the TLE as
shown in Fig. 3 !VC.is_HW_functional. (We negate the
desired behavior to obtain the TLE.) The FT of Fig. 3 depicts
that hardware integration failure is a single point failure mode
to make the Hardware non-functional. Moreover, at least one
primary and one backup sensor has to fail for the occurrence
of the TLE. We did not include all failure modes in Fig. 2 for
the sake of simplification. For instance, E2: LIDAR failure
can occur due to six failure modes, cf. Table I.

FT analysis. We analyze the FT of Fig. 3 in HOL4 using
the available FT formalization [1]. As theorem proving
requires manual interaction, we provide details of each step.
The FT gates are modeled as Hol_datatype ‘gate as:

‘gate = {AND, OR} of gate list | NOT of gate

| atomic of ‘a event‘

The formal definition of the FT in HOL4 is:

Definition 1: ⊢ AV_HW_fail_FT p E1 E2 E3 E4 E5

E6 E7 E8 E9 t = FTree p

(OR [E1; AND [OR (χf p [E2;E3;E4;E5;E6] t));

OR (χf p [E7;E8;E9] t))])

Where the function χf takes a probability space p, a list of
random variables, a time index t and returns a failure event at
time index t.

The minimal cutsets for the FT obtained from the MOCUS
algorithm are:

mcs 0=[’E1’], mcs 1 =[’E2’, ’E7’], mcs 2=[’E2’, ’E8’]
mcs 3=[’E2’, ’E9’], mcs 4 =[’E3’, ’E7’], mcs 5=[’E3’, ’E8’]

mcs 6=[’E3’, ’E9’], mcs 7 =[’E4’, ’E7’], mcs 8=[’E4’, ’E8’]
mcs 9=[’E4’, ’E9’], mcs 10=[’E5’, ’E7’], mcs 11=[’E5’, ’E8’]
mcs 12=[’E5’, ’E9’], mcs 13=[’E6’, ’E7’], mcs 14=[’E6’, ’E8’]
mcs 15=[’E6’, ’E9’]

Attributing the exponential distribution to the failure of
components, the failure probability of AV Hardware FT
(FTLE(t))is mathematically expressed as:

1− e−λE1·t ·
6∏

i=2

9∏
j=7

(1− (1− e−λEi·t)(1− e−λEj ·t)) (1)

Equation (1) is formally verified as a theorem in HOL4, using
the PIE [1] principle, while containing an exhaustive list of
all the required assumptions:

Theorem 1: ⊢ (A1): 0 ≤ t ∧ prob_space p ∧
(A2): (∀x′. MEM x′ (fail_event_list p

[E1;E2;E3;E4;E5;E6;E7;E8;E9] t) ⇒
x′ ∈ events p) ∧ (A3): mutual_indep p (FLAT

(list_fail_event_list p [[E1]; [E2;E7];

[E2;E8]; [E2;E9]; · · · [E6;E7]; [E6;E8];

[E6;E9]] t)) ∧
(A4): list_exp p [C_E1;C_E2; · · · ;C_E8;C_E9]

[E1;E2;· · · ;E8;E9] ⇒
prob p (FTree p (AV_HW_fail p E1 E2 · · · E8 E9

t)) =

1 - list_prod (one_minus_exp_prod t [[C_E1];

[C_E2;C_E7]; [C_E2;C_E8];

[C_E2;C_E9]; · · · ; [C_E6;C_E7]; [C_E6;C_E8];

[C_E6;C_E9]])

The first assumption (A1) ensures that the variable t models
time as t ∈ R≥0. The next assumption (A2) ensures that p
is a valid probability space based on the probability theory in

TLE =!VC.is_HW_functional

E1: Hardware Integeration Failure Sensors Failure

Primary Sensors Failure Backup Sensors Failure

E2: LIDAR Failure E3: RADAR
Failure E4: GPS Failure E5: Camera

Vision Failure
E6: Wheel

Encoder Failure
E7: Infrared

Failure
E8: Ultra sound

Failure
E9: HW

Comm.Failure

Fig. 3: Fault tree for Hardware block as generated using XSAP

HOL [18]. The next assumption (A3) ensures that the events
corresponding to the failures modeled by the random variables
E1, · · ·E9 are valid events from the probability space p and
they are mutually independent. Finally, the last assumption
(A4) characterizes the random variables E1, · · · E9 as expo-
nential random variables with failure rates C E1 · · · , C E9,
respectively. The function one_minus_exp_prod accepts
a two-dimensional list of failure rates and returns a list that
corresponds to Equation (1). The proof of Theorem 1 is also
provided in our on line results. The distinguishing feature of
this result is that all variables are universally quantified, i.e.,
the failure probability of the AV Hardware can be calculated
for any value of failure rates.

V. CONCLUSIONS

This paper presents a novel hybrid approach for formal
FTA that leverages upon the complementary strengths of
both model checking and theorem proving, i.e., automatic
functional analysis as well as fault tree generation along with
the theorem proving based complete FTA. Successful results
on an automated vehicle case study are presented. We plan
to extend this work to develop a comprehensive formal safety
analysis framework for automated vehicle systems.

REFERENCES

[1] W. Ahmad and O.Hasan. Formalization of fault trees in higher-
order logic: A deep embedding approach. In Dependable Software
Engineering Theories, Tools and Applications, volume 9984 of LNCS,
pages 264–279. Springer, 2016.

[2] Waqar Ahmad and Osman Hasan. Towards Formal Fault Tree Analysis
Using Theorem Proving. In Conferences on Intelligent Computer
Mathematics, volume 9150 of LNCS, pages 39–54. Springer, 2015.

[3] Christel Baier and Joost-Pieter Katoen. Principles of model checking.
MIT Press, 2008.

[4] Clark Barrett and Cesare Tinelli. Satisfiability Modulo Theories, pages
305–343. Springer, 2018.

[5] Axel Berres and Holger Schumann. Automatic Generation of Fault
Trees: A survey on methods and approaches. In ESREL 2016, 2016.

[6] Parth Bhavsar, Plaban Das, Matthew Paugh, Kakan Dey, and Mashrur
Chowdhury. Risk analysis of autonomous vehicles in mixed traffic
streams. Transportation Research Record: Journal of the Transportation
Research Board, (2625):51–61, 2017.

[7] Benjamin Bittner, Marco Bozzano, Roberto Cavada, Alessandro Cimatti,
Marco Gario, Alberto Griggio, Cristian Mattarei, Andrea Micheli, and
Gianni Zampedri. The xSAP Safety Analysis Platform. In TACAS,
volume 9636 of LNCS, pages 533–539. Springer, 2016.

[8] Marco Bozzano, Harold Bruintjes, Alessandro Cimatti, Joost-Pieter
Katoen, Thomas Noll, and Stefano Tonetta. COMPASS 3.0. In TACAS
(1), volume 11427 of LNCS, pages 379–385. Springer, 2019.

[9] Marco Bozzano, Alessandro Cimatti, A Fernandes Pires, D Jones,
G Kimberly, T Petri, R Robinson, and Stefano Tonetta. Formal Design
and Safety Analysis of AIR6110 Wheel Brake System. In Computer
Aided Verification, volume 9206 of LNCS, pages 518–535. Springer,
2015.

[10] Roberto Cavada, Alessandro Cimatti, Michele Dorigatti, Alberto Grig-
gio, Alessandro Mariotti, Andrea Micheli, Sergio Mover, Marco Roveri,
and Stefano Tonetta. The nuXmv Symbolic Model Checker. In
International Conference on Computer Aided Verification, volume 8559
of LNCS, pages 334–342. Springer, 2014.

[11] Mirko Conrad, Guido Sandmann, and Patrick Munier. Software tool
qualification according to iso 26262. In SAE 2011 World Congress &
Exhibition. SAE International, 2011.

[12] Plaban Das. Risk analysis of autonomous vehicle and its safety
impact on mixed traffic stream. Master’s thesis, Dept. of Civil and
Environmental Engineering, Rowan University, 2018.

[13] Charles E. Dickerson, Rosmira Roslan, and Siyuan Ji. A formal
transformation method for automated fault tree generation from a uml
activity model. IEEE Transactions on Reliability, 67(3):1219–1236,
2018.

[14] Yassmeen Elderhalli, Osman Hasan, Waqar Ahmad, and Sofiène Tahar.
Formal dynamic fault trees analysis using an integration of theorem
proving and model checking. In NASA Formal Methods, volume 10811
of LNCS, pages 139–156. Springer, 2018.

[15] Yassmeen Elderhalli, Osman Hasan, and Sofiène Tahar. A Methodology
for the Formal Verification of Dynamic Fault Trees Using HOL Theorem
Proving. IEEE Access, 7:136176–136192, 2019.

[16] Christian Hensel, Sebastian Junges, Joost-Pieter Katoen, Tim Quatmann,
and Matthias Volk. The Probabilistic Model Checker Storm. CoRR,
abs/2002.07080, 2020.

[17] Joost-Pieter Katoen. The Probabilistic Model Checking Landscape. In
Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS ’16, New York, NY, USA, July 5-8, 2016, pages
31–45. ACM, 2016.

[18] T. Mhamdi, O. Hasan, and S. Tahar. On the Formalization of the
Lebesgue Integration Theory in HOL. In Interactive Theorem Proving,
volume 6172 of LNCS, pages 387–402. Springer, 2011.

[19] Faida Mhenni, Nga Nguyen, and Jean-Yves Choley. Automatic fault
tree generation from sysml system models. In 2014 IEEE/ASME
International Conference on Advanced Intelligent Mechatronics, pages
715–720, 2014.

[20] National Highway Transportation and Safety Administration NHTSA.
Preparing for the Future of Transportation: Automated Vehicle 3.0, 2018.

[21] Enno Ruijters and Mariëlle Stoelinga. Fault tree analysis: A survey of
the state-of-the-art in modeling, analysis and tools. Computer Science
Review, 15-16:29–62, 2015.

[22] M Swarup and M Srinivasa Rao. Safety Analysis of Adaptive Cruise
Control System Using FMEA and FTA. International Journal of
Advanced Research in Computer Science and Software Engineering
Research Paper, 4(6), 2014.

	Introduction
	Proposed Approach
	Case study: automated vehicle system
	Experimental Results
	Conclusions
	References

