
Metaheuristic Algorithms for Proof Searching in
HOL4

M. Saqib Nawaz1, M. Zohaib Nawaz2, Osman Hasan3 and Philippe Fournier-Viger1
1School of Computer Science and Software Engineering, Shenzhen University, China

2Department of Computer Science and IT, University of Sargodha, Sargodha, Pakistan
3School of Electrical Engineering and Computer Science, National University of Sciences and Technology

(NUST), Islamabad, Pakistan
msaqibnawaz@szu.edu.cn, zohaib.nawaz@uos.edu.pk, osman.hasan@seecs.edu.pk, philfv@szu.edu.cn

Abstract—User guided proof development in interactive theo-
rem proving is a manual and time consuming activity. For au-
tomating proof searching and optimization in a higher-order logic
proof assistant, we provide two metaheuristic algorithms that are
based on Fitness Dependent Optimizer (FDO) and Bat Algorithm
(BA). In both metaheuristic algorithms, random proof sequences
are first created from a population of frequently occurring
proof steps that are discovered using pattern mining techniques.
Created proof sequences are then evolved till their fitness matches
the fitness of the original (or target) proof sequences. Experiments
are performed to investigate the performance of the proposed
algorithms on different HOL4 theories. Moreover, the proposed
FDO and BA-based proof searching approaches are compared
with Simulated Annealing (SA) and Genetic Algorithm (GA)-
based methods. Results show that BA performs best, followed by
FDO and SA for proof finding and optimization in HOL4.

Index Terms—Proof Searching, HOL4, Fitness Dependent Op-
timizer, Bat Algorithm, Simulated Annealing, Genetic Algorithm

I. INTRODUCTION

Interactive theorem provers (ITPs) are used not only for
the formalization of mathematical theorems and substantial
parts of theoretical computer science, but also to model and
verify complex software and hardware systems [2]. In ITPs,
the systems that need to be analyzed are first modeled using
an appropriate mathematical logic. Important (and sometimes
critical) system properties are then proved using theorem
provers [6]. ITPs are generally based on higher-order logic
(HOL). The rich logical formalisms offered by HOL enable
ITPs to define and reason about complex systems. However,
due to the undecidability in HOL, the reasoning process cannot
be made fully automated and human guidance is always
required in the process of proof searching and development
[11]. Due to this, ITPs are also called proof assistants. Some
widely used proof assistants are HOL4 [19], Isabelle/HOL
[16], Coq [3] and PVS [17].

The user driven proof development process makes the proof
guidance and automation as well as automatic proof searching
some extremely desirable features for ITPs. Evolutionary and
heuristic algorithms, also indicated in [7], [9], [20], can be

DOI reference number: 10.18293/SEKE2022-103

used to efficiently search for the proofs of theorems/lemmas
because of their ability and suitableness to handle black-box
search and optimization problems. Thus for the HOL4 proof
assistant, we proposed an evolutionary approach [15], where a
Genetic Algorithm (GA) was used for proof searching and op-
timization. Moreover, a simulated annealing (SA)-based proof
searching approach was developed [13], which outperformed
the GA-based method.

Both proof searching approaches [13], [15] were found to be
quite efficient in evolving random proofs. However, alternative
proof searching approaches could be developed as a plethora of
evolutionary/heuristic techniques are present in the literature.
Thus, we further investigate the applicability of evolution-
ary/heuristic techniques in the HOL4 proof assistant. This
paper extends prior works [13], [15] by proposing two more
metaheuristic-based approaches, where Fitness Dependent Op-
timizer (FDO) [1] and Bat Algorithm (BA) [21] are used for
proof searching and optimization in HOL4. The performance
of FDO and BA are compared with that of GA [15] and SA
[13] for various parameter values. Through experiments on
proof sequences of formalized theorems/lemmas in different
HOL4 theories, it is found that BA performs better than the
other three algorithms, followed by FDO and SA. Whereas,
different versions of GA perform poorly for proof finding and
optimization.

II. RELATED WORK

Some work has been done in the past where evolutionary
algorithms were used in ITPs. For example, a GA was used
to automatically find the formal proofs of theorems/lemmas
in the Coq proof assistant [7], [20]. But a major limitation
of this approach is that even though it can find small proofs
for theorems that contain a few proof steps, a user is still
required to interact with Coq to guide the proof process for
large theorems/lemmas that contain more proof steps. The
work [9] briefly discussed how evolutionary computation can
be used to improve the heuristics of automatic proof search
in Isabelle/HOL. The objective is to find heuristics that can
select the most promising PSL [10] (proof strategy language

for Isabelle/HOL) strategy from various available hand written
strategies when applied to a given proof goal.

Another work [4] used genetic programming [8] and a
pairwise combination (that focused only on crossover-based
approach) to evolve frequent proofs patterns in the Isabelle
proof assistant into compound tactics. However, a linearized
tree structure was used to represent Isabelle’s proofs. The lin-
earization sometimes leads to the loss of important connections
(information) among different branches in the proof trees. Due
to this, the evolution process may not find interesting patterns
and tactics in those trees.

The proposed proof searching approaches, presented in this
paper, overcome the aforementioned limitations as they can
handle proof goals of various lengths. Moreover, the dataset
of proof sequences has all the important information that is
needed for the determination of frequent proof steps, through
which an initial population is generated. Lastly, the proposed
approaches do not require any sort of human guidance in the
evolution process for random proof sequences.

III. PROPOSED PROOF SEARCHING APPROACHES

HOL4 follows the interactive proof development process
using the lambda calculus proof representation. Formal proofs
in HOL4 can be constructed with an interactive goal stack
that are then put together using the ML function prove. A
user of HOL4 interacts with the proof assistant to guide the
proof process by providing necessary tactics, definitions, and
already verified theorems. HOL4 also offers automatic proof
procedures that help the user in directing the proof.

To use evolutionary/heuristic algorithms for proof searching
and optimization, the data available in HOL4 proof files is first
converted to a proper computational format. Moreover, the
redundant information (related to HOL4) that plays no part in
proof searching and evolution is removed from the proof files.
Now, the complete proof for a theorem/lemma is a sequence
of HPS (HOL4 proof step).

Let PS = {HPS1, HPS2, . . ., HPSm} denote
the set of HPS. PSS, a proof step set, is a set
of HPS, i.e., PSS ⊆ PS. For example, consider
that PS = {DISCH TAC, REPEAT GEN TAC, RW,
FULL SIMP TAC, PROVE TAC, REWRITE TAC}. The set
{FULL SIMP TAC,RW,DISCH TAC,REWRITE TAC} is a proof
step set that contains four HPS. A proof sequence is
a list of PSS’s, i.e., S = ⟨PSS1, PSS2, ..., PSSn⟩,
such that PSSi ⊆ PSS (1 ≤ i ≤ n). For
example, ⟨{FULL SIMP TAC, PROVE TAC}, {DISCH TAC,
REPEAT GEN TAC, REWRITE TAC}, {RW}⟩ is a proof
sequence containing three PSS and six HPS.

A proof dataset PD is a list of proof sequences, i.e., PD =
⟨S1, S2, ..., Sp⟩. Each sequence in the PD has an identifier
(ID) denoted as p. For example, Table I shows a PD that has
five proof sequences.

A. Proposed FDO

The Fitness dependant optimizer (FDO) [1] is motivated
by the swarming behavior of bees during reproduction when

Table I
A SAMPLE PROOF DATASET

ID Proof Sequence
1 ⟨{GEN TAC, Q TAC, SUFF TAC}⟩
2 ⟨{Q TAC, SRW TAC, HO MATCH MP TAC}⟩
3 ⟨{RW, AP TERM TAC, MAP EVERYTHING TAC, CONJ TAC,

PROVE TAC}⟩
4 ⟨{CASES TAC, DISCH TAC, SUBGOAL THEN, CASES ON, BETA TAC,

AP TERM TAC, GEN TAC}⟩
5 ⟨{SRW TAC, Q.SUBGOAL THEN, SUBST1 TAC, RW TAC, Q.EXISTS TAC,

FULL SIMP TAC}⟩

they explore and look for new hives. FDO consists of two
processes: (1) The scout bee searching process, and (2) The
scout bee movement process. In the first process, the scout
bees search for a suitable solution. In the second process, a
random walk and a fitness weight is used to move a scout
bee towards a new position that indicates a potentially better
solution.

Algorithm 1 shows the pseudocode of the proposed FDO for
proof finding and optimization in the HOL4 theories. FDO first
creates an initial population (Pop) from frequent HPS (FHPS)
that are discovered with sequential pattern mining (SPM)
techniques [5]. From the initial population, a random scout
bee (SB) is generated. The fitness of the solution, a target
proof sequence (P), and SB is calculated with the fitness
procedure listed in Algorithm 2. The fitness values guide the
FDO towards the best solution(s) (proof sequences). Fitness
evaluates the closeness (or similarity) of a given solution (SB)
with the best solution (the target solution). The fitness value
in this work denotes the total number of those positions in SB
and P where HPS are same.

In FDO, the general equation to calculate the movement of
a scout bee is:

xi,t+1 = xi,t + pace (1)

where xi,t represents the current scout bee at iteration (t) and
the movement rate is denoted by pace that sets the scout bee
direction. The fitness value (fw) manages the pace:

fw =

∣∣∣∣∣x∗
i,t,f

xi,t,f

∣∣∣∣∣× wf (2)

where x∗i,t,f and xi,t,f denote the best global fitness of the
solution, and the current fitness of the scout bee and wf is a
weight factor that can be either 0 or 1. In our case, the best
global fitness is the fitness of the target proof sequence (P)
and the current fitness is the fitness of the current scout bee
(SB). Moreover, wf is set to 1 as FDO was unable to evolve
random scout bees to target proof sequences when wf = 0.

FDO considers some scenarios for fw to provide a random
mechanism for the pace. For example, if fw = 1 or 0, and
xi,t,f = 0, FDO uses Equation (3) to find the pace randomly.
On the other hand, if 0 < fw < 1, then FDO generates a
random number r, in the range [-1, 1], to make sure that the
scout bee searches in every direction. For different values of
r, the pace is calculated using equation (4):

pace = (xi,t × r) if((fw = 1 ∧ 0) ∧ xi,t,f = 0) (3)

Algorithm 1 FDO proof finding
Input: FHPS: Frequent HOL4 proof steps, PD: proof sequences database
Output: Generated proof sequences

1: Pop ← FHPS
2: for each P ∈ PD do
3: gb ← Fitness(P, P)
4: SB ← randomseq(Pop, length(P))
5: pb ← Fitness(SB,P)
6: FS ← ()
7: if pb = gb then
8: return SB
9: end if

10: while (pb < gb) do
11: for i in range(length(SB)) do
12: if SB[i] = P [i] then
13: FS.append[i]
14: end if
15: end for
16: Calculate movement with pace using Equation (5)
17: NS ← update position(SB, pace, FS)
18: NF ← Fitness(NS,P)
19: if NF = gb then
20: return NS
21: end if
22: if NF > pb then
23: SB ← NS
24: pb ← NF
25: end if
26: end while
27: return SB
28: end for

pace =

{
(xi,t − x∗i,t)fw(−1) if 0 < fw < 1 ∨ r < 0

(xi,t − x∗i,t)fw if 0 < fw < 1 ∨ r ≥ 0

(4)

Algorithm 2 Fitness
Input: Pseq: A proof sequence, P: The current target proof sequence
Output: Integer that represents the fitness of a proof sequence (Pseq)

1: procedure FITNESS(Pseq, P)
2: i, f ← 0
3: while (i ≤ length(Pseq) - 1) do
4: if (Pseq[i] = P[i]) then
5: f ← f + 1
6: end if
7: i← i+ 1
8: end while
9: return f

10: end procedure

According to the nature of our problem, the movement
in Equation (1) is adapted to be an integer number. Thus,
Equation (1) is modified as:

xi,t+1 = xi,t + ⌊pace⌋ (5)

where ⌊pace⌋ returns the integer that is less than or equal to
pace.

Equation (5) for updating the movement basically indicates
how many positions are required to be changed in a random
proof sequence (SB) so that it reaches the next position. In

the position update process, randomly selected position values
in a scout bee are changed from their original values.

Algorithm 3 Update Position
Input: PS: A proof sequence, UP : updated position, and FS: fixedSlots
array
Output: Updated Sequence

1: procedure UPDATE POSITION(PS,UP, FS)
2: for i in range(0, UP) do
3: rp← randomint(1, length(PS))
4: if (rp /∈ FS) then
5: alter ← randomsample(Pop, 1)▷ (1 HPS form Pop)
6: PS[rp]← alter ▷ (PS[rp] ̸= alter)
7: end if
8: end for
9: return PS

10: end procedure

We use an array called fixedSlots(FS) to further enhance
the searching process in FDO. This array keeps track of each
position in SB that has matched its value with the P . During
the update of SB positions, it is checked whether each position
in SB that is to be replaced with a random HPS, is already
present in FS or not. If the position is present in FS, then
another random number is generated for a different position.
If the position is not present, then that particular position is
updated with a random HPS from Pop. Algorithm 3 is the
procedure for updating the position.

B. Proposed BA

Bat Algorithm (BA) [21] is inspired by the echolocation
behavior of microbats, with varying pulse rates of emission
and loudness. The three main steps of BA are: (1) Esti-
mating the optimal distance of bats towards the solution(s)
using the phenomena of echolocation, (2) Bats moving in
the search space with distinct velocity and fixed frequency.
The wavelength and loudness can vary according to bats
distance between solution(s) and the bat current position,
and (3) Linearly decreasing the loudness and increasing the
emission factor of bats when they are near to the solution(s).
Algorithm 4 shows the pseudocode of the proposed BA for
proof searching and optimization in HOL4 theories.

BA also creates an initial population (Pop) first from FHPS.
A random proof sequence, that represents a bat (B), is then
generated from the population. In general, the BA uses the
following equations to calculate the frequency, velocity, and
position of a bat, respectively:

fi = fmin + (fmax − fmin)β (6)

vt+1
i = vti + (xt

i −X∗)fi (7)

xt+1
i = xt

i + vt+1
i (8)

where fi is the frequency of the i-th bat, fmax and fmin

represent the maximum and minimum frequencies of the sound
waves released by bats, and β is a random number in the range
[0, 1]. Moreover, vti and vt+1

i represent the velocities of the
i-th bat at iterations t and t + 1, respectively, xt

i and xt+1
i

Algorithm 4 BA proof finding
Input: FHPS: Frequent HOL4 proof steps, PD: proof sequences database
Output: Generated proof sequences

1: Pop ← FHPS
2: for each P ∈ PD do
3: gbest ← Fitness(P, P)
4: B ← randomseq(Pop, length(P))
5: pbest ← Fitness(B,P)
6: FS ← ()
7: if pbest = gbest then
8: return B
9: end if

10: while (pbest < gbest) do
11: for i in range(length(B)) do
12: if B[i] = P [i] then
13: FS.append[i]
14: end if
15: end for
16: Calculate updated velocity (vt+1

i) using Equation (11)
17: NS1← update position(B, vt+1

i , FS)
18: Calculate yt+1

i using Equation (12)
19: ran1← rand(0, 1)
20: if ran1 < yt+1

i then
21: NS ← Neighbor(NS1)
22: else
23: NS ← NS1
24: end if
25: NF ← Fitness(NS,P)
26: if NF = gbest then
27: return NS
28: end if
29: if NF > pbest then
30: B ← NS
31: pbest ← NF
32: end if
33: end while
34: return B
35: end for

represent the locations of the i-th bat at iterations t and t
+ 1, respectively, and X∗ represents the current optimal best
location. In this work, X∗ is equal to the total number of HPS
in the target proof sequence.

While approaching towards the prey (target proof sequence
in this work), a bat increases its pulse emission rate and
decreases its loudness. These phenomena are simulated using
the following equations:

At+1
i = αAt

i (9)

rt+1
i = r0i (1 + exp(γt)) (10)

where At
i and At+1

i represent the loudness at iterations t and t
+ 1, respectively, r0i represents the initial pulse emission rate,
rt+1
i represents the pulse emission rate at iteration t + 1 and
0 < α < 1 and γ > 0 are constants.

For proof searching and optimization, a random bat (B)
updates its velocity, location, loudness, and pulse emission
rates repeatedly, until the target proof sequence (P) is reached.

Similar to movement update for FDO, the velocity update
Equation (7) for BA is rewritten as:

vt+1
i = vti +

⌊
(gBest− xt

i)fi
⌋

(11)

where gBest is equal to X∗ in Equation (11) and
⌊(gBest− xt

i)fi⌋ returns the integer that is less than or equal
to (gBest− xt

i).
Equation (11) for updating the velocity in BA indicates how

many positions are required to be changed in a random proof
sequence (B) so that it reaches the next position. Algorithm
3 is also used in BA to update the velocity position.

Equations (9) and (10) are used to calculate the loudness
and pulse emission of a bat (B). Here, we combine these two
equations together as follows:

yt+1
i = At+1

i + rt+1
i (12)

Using the BA idea, if a random number ran1 is less than
yt+1
i , then one position value is changed in bat B. Algorithm

5 lists the procedure for changing one position in B. The
randomly selected location value (HPS) is changed from its
original value using the Neighbor procedure in Algorithm 5.

Algorithm 5 Neighbor
Input: P1: A proof sequence
Output: The neighbor proof sequence

1: procedure NEIGHBOR(P1)
2: ind← randomint(1, length(P1))
3: alter ← randomsample(Pop, 1) ▷ (1-HPS form Pop)
4: P1[ind]← alter ▷ (P1[ind] ̸= alter)
5: return P1

6: end procedure

IV. RESULTS AND DISCUSSION

The proposed FDO and BA are implemented in Python1. To
evaluate the proposed approaches, experiments were carried on
a computer equipped with a fifth generation Core i5 processor
and 4 GB of RAM. For FDO, the weight factor wf is set to
1. For BA, fmin and fmax are set to 0 and 10, respectively.
Whereas, r0i , the initial loudness (A0

i), α and γ are set to 0.2,
1, 0.8 and 0.9, respectively.

Table II
A SAMPLE OF THEOREMS / LEMMAS IN SOME HOL4 THEORIES

HOL Theory No. HOL4 Theorems / Lemmas
L1 ⊢ ∀x. 0<=x∧x <= inv(2) ==> exp(x) <= 1+2*x

Transcendental T1 ⊢ ∀ x. (\n. (∧exp_ser) n*(x pow n)) sums exp(x)
T2 ⊢ ∀ x. 0 < x∧ x < 2 ==> 0 < sin (x)

Arithmetic T3 ⊢ ∀n a b. 0 < n ==>((SUC a MOD n = SUC b MOD n)
= (a MOD n = b MOD n))

RichList T4 ⊢ ∀m n. ((l:’a list). ((m + n)=(LENGTH l))==>
(APPEND (FIRSTN n l) (LASTN m l) = l)

T5 ⊢ ∀n m. (m <= n ==> (iSUB T n m = n - m)) ∧
Number (m < n ==> (iSUB F n m = n - SUC m))

T6 ⊢ ∀ n a. 0 < onecount n a ∧ 0 < n ==>
(n = 2 EXP (onecount n a - a) - 1)

Sort T7 ⊢(PERM L[x]<==>(L= [x])∧(PERM [x] L <==>(L = [x])
T8 ⊢ PERM = PERM_SINGLE_SWAP
T9 ⊢ ∀ x y. abs_rat (frac_add (rep_rat (

Rational abs_rat x)) y) = abs_rat (frac_add x y)
T10 ⊢ ∀ r1 r3. rat_les r1 r3 ==> ?r2. rat_res r1 r2

∧ rat_les r2 r3

1Code available at: https://github.com/saqibdola/BAFDO-HOL4

We examined the performance of proposed FDO and BA in
finding the correct proofs of theorems/lemmas in 14 different
HOL4 theories available in its library. These theories are:
Transcendental, Arithmetic, RichList, Number, Sort, Rational,
Bool, FiniteMap, InductionType, BinaryWords, Encode, Coder,
Decode and Combinator. From each theory, five to twenty
theorems/lemmas were randomly selected. The PD contains
300 proof sequences in total and 93 distinct HPS. Some
important theorems/lemmas from aforementioned theories are
listed in Table II. Table III shows the performance of the FDO
and BA on theorems/lemmas that are listed in Table II.

Recently, we used a GA [15] with various crossover and
mutation operators and a SA [13] for proof searching and
optimization in HOL4. Just like FDO and BA, an initial pop-
ulation for GA and SA was first created using the SPM-based
learning approach [14]. Crossover and mutation operators
were used in GA and annealing process in SA to evolve the
random proof sequences towards the original (target) proofs. In
GA, three crossover operators (single point crossover (SPC),
multi point crossover (MPC) and uniform Crossover (UCO))
and two mutation operators (standard mutation (SM) and
modified pairwise interchange mutation (MPIM)) were used.
The main reason to use different versions of crossover and
mutation operators was to compare their effect on the overall
performance of GAs in proof searching.

We run the algorithms for GA and SA on PD to compare its
performance with FDO and BA. The comparison of FDO, BA
with SA and GA for the theorem (T2) is shown in Table III.
For T2, BA performed better (8,017 generations) than others,
followed by FDO (16,767 generations) and SA (30,346). For
GA, we found that using different crossover operators has no
major effect on its overall performance. However, MPIM was
faster to find the target proof sequences than SM.

Table III
RESULTS FOR FDO, BA AND COMPARISON WITH GA, SA

T/L Algorithm Fitness Generations Time (s)
L1 54 10,027 0.362
T1 58 10,809 0.385
T2 81 16,767 0.793
T3 66 11,887 0.475
T4 19 4,073 0.062
T5 23 4,858 0.071
T6 FDO 20 3,880 0.069
T7 17 3,186 0.0417
T8 42 6,959 0.166
T9 23 4,594 0.062

T10 23 4,436 0.060
L1 54 5,885 0.251
T1 58 6,124 0.273
T2 81 8,017 0.506
T3 66 6,414 0.272
T4 19 1,974 0.052
T5 23 2,335 0.075
T6 BA 20 2,921 0.080
T7 17 1,758 0.019
T8 42 4,487 0.098
T9 23 3,012 0.078

T10 23 2,894 0.082
T2 SA 81 30,346 0.858
T2 GA(SPC/SM) 81 2,231,664 58.56
T2 GA(MPC/SM) 81 2,713,867 69.84
T2 GA(UC/SM) 81 2,905,410 75.63
T2 GA(SPC/MPIM) 81 500,500 14.89
T2 GA(MPC/MPIM 81 524,272 16.14
T2 GA(UC/MPIM) 81 589,292 17.15

The average number of generations for the four algorithms

to reach the target proof sequences in the whole dataset are
shown in Table IV. BA performed better than other algorithms,
followed by FDO, SA and GA. The possible reason for this
is that the fixedSlots array in FDO and BA ensures that no
changes are made in those positions where the HPS in both
random solutions (bee in FDO and bat in BA) and the target
solution (original proof sequence) match. This prevents the
mismatching of HPS at already matched positions in both
solutions. The reason for BA performing better than FDO is
that besides the update velocity function, the random bat in BA
also goes through the Neighbor procedure that allows more
diversity. GA with different crossover and MPIM operators
is approximately fourteen times faster (generation wise) than
GA with different crossover operators and SM. This is due
to the fact that the SM changes the HPS at a single location
in the sequence, whereas MPIM changes two locations. Thus,
MPIM explores a more diverse solution as compared to SM.
On the other hand, SA is six times faster than GA with
MPIM and different crossover operators. Whereas, FDO is
approximately one and seven times faster than SA, and BA is
approximately twice faster than FDO. Moreover, the memory
used by proof searching approaches while searching for proofs
of formalized theorems/lemma in PD is also listed in Table IV.
All the algorithms require approximately the same memory
with negligible difference.

Table IV
AVERAGE TOTAL GENERATION COUNT FOR FDO, BA, SA AND GA

Avg. Generation Count Total Time Memory
FDO 779,819 14.15 s 3521 Mb
BA 375,044 9.09 s 3454 Mb
SA 1,319,745 19.54 s 3459 Mb

GA(SPC/SM) 123,513,780 1844.50 s 3545 Mb
GA(MPC/SM) 120,580,649 1697.47 s 3463 Mb
GA(UC/SM) 119,633,993 1569.69 s 3507 Mb

GA(SPC/MPIM) 8,833,888 194.25 s 3550 Mb
GA(MPC/MPIM) 9,141,943 208.34 s 3702 Mb
GA(UC/MPIM) 8,704,233 190.491 s 3682 Mb

The longest proof in the PD is for theorem T2 (positive
value of sine) and it consists of 81 HPS. Here we call this
theorem PVoS. We checked how much time the four algorithms
take generation wise and also how many correct HPS in
PVoS are found in different generations by the algorithms.
The lines in Figure 1 represent the time for algorithms and
the bars represent the fitness achieved by the algorithms.
BA reached the maximum fitness of 81 within approximately
8,000 generations. As generation increases, the performance of
algorithms tend to decrease for fitness. This means that with
more generations, algorithms were slow in finding the correct
HPS for a proof sequence as compared to earlier generations.
An interesting behavior for GA is that it tends to decrease the
fitness values (found HPS) in some generations. For exam-
ple, GA(MPC/MPIM) and GA(MPC/SM) found less HPS at
11,000 and 13,000, respectively, compared to correctly found
HPS at earlier locations (10,000 and 12,000 respectively). The
other algorithms do not exhibit such behavior.

Lastly, the four algorithms are compared in terms of conver-
gence speed to examine how fast the algorithms were able to

0

10

20

30

40

50

60

70

80

90

0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

0 5000 10000 15000 20000
Iterations

F
it

n
es

s
V

a
lu

e

T
im

e
(S

)
Fitness (GA(MPC/SM)) Fitness (GA(MPC/MPIM))

Fitness (SA) Fitness (FDO)

Fitness (BA) Time (GA(MPC/SM))

Time (GA(MPC/MPIM)) Time (SA)

Time (FDO) Time (BA)

Figure 1. Time and fitness in different generations

converge towards the optimal solution. For the first 20,000
generations, the convergence speed of the four algorithms
for PVoS is shown in Figure 2. BA converges very fast and
found the correct HPS in approximately 8,000 generations.
The performance of GA(MPC/MPIM) and SA was same
compared to BA at the start. However, after 5,000 generations,
GA(MPC/MPIM) and SA took more generations in finding the
remaining correct HPS. The performance of SA after 13,000
generations tends to get low. Whereas, FDO performance
was linear and fast from the beginning. On the other hand,
GA(MPC/SM) convergence speed is slow from the start. At
20,000 generations, GA(MPC/MPIM) finds approximately 64
correct HPS, GA(MPC/SM) finds approximately 5 correct
HPS, whereas SA finds 76 correct HPS.

0

9

18

27

36

45

54

63

72

81

0 2500 5000 7500 10000 12500 15000 17500 20000

Fi
tn
e
ss

Iterations

GA(MPC/SM)

GA(MPC/MPIM)

SA

FDO

BA

Figure 2. Convergence performance

In summary, it was observed through experiments that
the proposed FDO-based and BA-based proof searching ap-
proaches can quickly optimize and automatically find the cor-
rect proofs for formalized theorems/lemmas in HOL4 theories.
The proof searching approaches in this work and in [12],
[13], [15] are not limited to HOL4 and can be used in proof
assistants such as Isabelle/HOL [16], Coq [3], and PVS [17].

V. CONCLUSION

Despite huge developments in the last two decades, ITPs
still depend on user interaction to manually guide proof assis-
tants in finding the proof for a conjecture (unproved theorem or
lemma). This interaction makes the proof development process

quite complicated and a time consuming activity for the
users. This paper introduced two proof searching approaches
based on FDO and BA for optimizing and finding the correct
proofs in various HOL4 theories. Additionally, a performance
comparison of the two approaches with SA and GA showed
that both FDO and BA performed better than them.

In future, we are interested in exploiting the Curry-Howard
correspondence in sequent calculus [18] that offers a rela-
tionship between programming and mathematical proofs. This
will allow us to use evolutionary/heuristic techniques to write
programs (proofs) and use HOL4 proof assistant to simplify
and verify by computationally evaluating the programs.

REFERENCES

[1] J. M. Abdullah and T. Ahmed. Fitness dependent optimizer: Inspired by
the bee swarming reproductive process. IEEE Access, 7:43473–43486,
2019.

[2] J. Avigad, J. C. Blanchette, G. Klein, L. C. Paulson, A. Popescu, and
G. Snelting. Introduction to milestones in interactive theorem proving.
Journal of Automated Reasoning, 61(1-4):1–8, 2018.

[3] Y. Bertot and P. Casteran. Interactive theorem proving and program
development: Coq‘Art: The calculus of inductive construction. Springer,
2003.

[4] H. Duncan. The use of data-mining for the automatic formation of
tactics. PhD thesis, University of Edinburgh, UK, 2007.

[5] P. Fournier-Viger, J. C. W. Lin, R. U. Kiran, Y. S. Koh, and R. Thomas.
A survey of sequential pattern mining. Data Science and Pattern
Recognition, 1(1):54–77, 2017.

[6] O. Hasan and S. Tahar. Formal verification methods. In Encyclopedia of
Information Science & Technology, 3rd edition, pages 7162–7170. IGI
Global, 2015.

[7] S. Y. Huang and Y. P. Chen. Proving theorems by using evolutionary
search with human involvement. In Proceedings of CEC 2017, pages
1495–1502. IEEE, 2017.

[8] J. R. Koza. Genetic programming - On the programming of computers
by means of natural selection. MIT Press, 1993.

[9] Y. Nagashima. Towards evolutionary theorem proving for Isabelle/HOL.
In Proceedings of GECCO (Poster) 2019, pages 419–420. ACM, 2019.

[10] Y. Nagashima and R. Kumar. A proof strategy language and proof script
generation for Isabelle/HOL. In Proceedings of CADE 2019, volume
10395 of LNCS, pages 528–545. Springer, 2017.

[11] M. S. Nawaz, M. Malik, Y. Li, M. Sun, and M. I. U. Lali. A survey on
theorem provers in formal methods. CoRR, abs/1912.03028, 2019.

[12] M. S. Nawaz, M. Z. Nawaz, O. Hasan, P. Fournier-Viger, and M. Sun. An
evolutionary/heuristic-based proof searching framework for interactive
theorem prover. Applied Soft Computing, 104:107200, 2021.

[13] M. S. Nawaz, M. Z. Nawaz, O. Hasan, P. Fournier-Viger, and M. Sun.
Proof searching and prediction in HOL4 with evolutionary/heuristic and
deep learning techniques. Applied Intelligence, 51(3):1580–1601, 2021.

[14] M. S. Nawaz, M. Sun, and P. Fournier-Viger. Proof guidance in PVS
with sequential pattern mining. In Proceedings of FSEN 2019, volume
11761 of LNCS, pages 45–60. Springer, 2019.

[15] M. Z. Nawaz, O. Hasan, M. S. Nawaz, P. Fournier-Viger, and M. Sun.
Proof searching in HOL4 with genetic algorithm. In Proceedings of
SAC 2020, pages 513–520. ACM, 2020.

[16] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: A proof
assistant for higher-Order logic. Springer, 2002.

[17] S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS
system guide, PVS prover guide, PVS language reference. Technical
report, SRI International, November 2001.

[18] J. E. Santo. Curry-howard for sequent calculus at last! In Proceedings
of TLCA 2015, volume 38 of LIPIcs, pages 165–179, 2015.

[19] K. Slind and M. Norrish. A brief overview of HOL4. In Proceedings
of TPHOL 2008, volume 5170 of LNCS, pages 28–32. Springer, 2008.

[20] L. A. Yang, J. P. Liu, C. H. Chen, and Y. P. Chen. Automatically
proving mathematical theorems with evolutionary algorithms and proof
assistants. In Proceddings of CEC 2016, pages 4421–4428. IEEE, 2016.

[21] X. Yang. A new metaheuristic bat-inspired algorithm. In Nature Inspired
Cooperative Strategies for Optimization (NICSO), pages 65–74, 2010.

