Formalization of Asymptotic Notations in HOL4

Nadeem Iqbal, Osman Hasan, Umair Siddique, Falah Awwad

National University of Sciences and Technology, Islamabad, Pakistan College of Engineering, UAE University, Al Ain, UAE

> ICCCS 2019, Singapore February 25, 2019

Outline

Introduction

- Proposed Methodology
- Formalization Definitions
- Formal Verification
- Conclusions

Asymptotic Notations

• Used for computational time assessment of Algorithms

- The asymptotic notation based assessment is independent of
 - Language
 - Execution Platform
 - Compiler
 - Input data

Asymptotic Notations

- Big-O notation or simply O-notation was introduced by a number theorist Bachmann in 1894
- Little-o notation was introduced by Landau in 1909
- Big- Ω , Big- Θ , and Little- ω notations were presented by Knuth in 1976

Types of Analysis

Comparison of Analysis Techniques

Criteria	Paper-and- Pencil Proof	Simulation	Model Checking	Higher-order- logic Proof Assistants
Expressiveness			×	
Accuracy	×	×		
Automation	×			×

Given the extensive usage of asymptotic analysis of algorithms in safety-critical systems, there is a dire need of using formal methods support in this domain

Contributions of this paper

- A library of formalized asymptotic notations, i.e., O, Θ, Ω, o and ω, in the higher-order-logic theorem prover HOL4 using the real number theory
 - Formal Definitions of O, Θ , Ω , o and ω in HOL4
 - Formal Verification of Properties of O, Θ , Ω , o and ω in HOL4

HOL4 Theorem Prover

- Higher-order-logic Proof Assistant
 - Notation: ML
 - Small Core:
 - 5 basic axioms
 - 8 primitive inference rules
- Numerous automatic proof procedures are available
- Supports Reasoning about
 - Real Numbers
 - Calculus

Proposed Approach for Asymptotic Notations Based Analysis

Formal Definitions: BigO

 The BigO takes a function g as an input and returns the set of all functions f which qualify the condition 0 ≤ f(n) ≤ c * g(n)

Definition 1: BigO Notation
$\vdash \forall \texttt{ g. BigO (g:num \rightarrow real) = {(f:num \rightarrow real) }}$
$(\exists c n_0.(\forall n. n_0 \le n \land 0 < c \Longrightarrow 0 \le f(n) \le c g(n)))\}$

- Here f and g are functions which take a natural number num and return a real number real
- The constants c and n_0 are of type real and num, respectively

Formal Definitions

Definition 2: BigTheta Notation

$$\begin{array}{l} \vdash \forall \ \texttt{g. BigTheta} \ (\texttt{g:num} \rightarrow \texttt{real}) = \{(\texttt{f:num} \rightarrow \texttt{real}) \mid \\ (\exists \ \texttt{c1} \ \texttt{c2} \ \texttt{n_0}.(\forall \ \texttt{n.n_0} \le \texttt{n} \land \texttt{0} < \texttt{c1} \land \texttt{0} < \texttt{c2} \\ \implies \texttt{0} \le \texttt{c1} \ \texttt{g(n)} \le \texttt{f(n)} \le \texttt{c2} \ \texttt{g(n))}) \} \end{array}$$

Definition 3: BigOmega Notation

$$\begin{array}{l} \vdash \forall \texttt{ g. BigOmega (g:num \rightarrow real) = } \{\texttt{(f:num \rightarrow real)} \\ (\exists \texttt{ c n_0.(\forall n. n_0 \leq n \land 0 < \texttt{c} \Longrightarrow 0 \leq \texttt{c g(n)} \leq \texttt{f(n))}) \} \end{array}$$

Definition 4: LittleO Notation

 $\begin{array}{l} \vdash \forall \text{ g. Little0 (g:num \rightarrow real)} = \{(\texttt{f:num \rightarrow real}) | \\ (\exists \texttt{ c n_0.(\forall n. n_0 \leq n \land 0 < \texttt{c} \Longrightarrow 0 \leq \texttt{f(n)} < \texttt{c g(n))})} \end{array}$

Definition 5: LittleOmega Notation

 $\begin{array}{l} \vdash \forall \ g. \ \texttt{LittleOmega} \ (g:\texttt{num} \rightarrow \texttt{real}) = \{(\texttt{f}:\texttt{num} \rightarrow \texttt{real}) \mid \\ (\exists \ \texttt{c} \ \texttt{n}_\texttt{0}.(\forall \ \texttt{n}. \ \texttt{n}_\texttt{0} \le \texttt{n} \land \texttt{0} < \texttt{c} \implies \texttt{0} \le \texttt{c} \ \texttt{g}(\texttt{n}) < \texttt{f}(\texttt{n}))) \} \end{array}$

Formal Verification

- Using the formal definitions of Asymptotic notations, we formally verified their properties
 - Transitivity
 - Symmetry
 - Transpose symmetry
 - Reflexivity
- using the HOL4 theorem prover
- The properties not only ensure the correctness of our definitions but also play a vital role in the formal complexity analysis of algorithms

Properties of O Notation

Theorem 1: Transitivity of O-Notation

 $\vdash \forall f g h. f \in (BigO g) \land g \in (BigO h) \Longrightarrow f \in (BigO h)$

Theorem 2: Sum of O-Notation $\vdash \forall t1 t2 g1 g2. t1 \in (Big0 g1) \land t2 \in (Big0 g2) \implies$ (t1 n + t2 n) ∈ (Big0 (max (g1 n, g2 n)))

Conclusions

- Formalization of Asymtotic notations (*O*, *Θ*, *Ω*, *o* and *ω*) in HOL4
- Formal Framework for computational complexity analysis of algorithms
- Advantages
 - Accurate Results
 - Reduction in user-effort while formally Helpful in discovery of different pathways

Future Directions

- Applications in Cryptography
 - To estimate the size of the key so that it will be infeasible to break a system using given number of steps
 - Security assessment of authentication protocols, such as, the security proof of password authentication protocols

Thanks!

Questions