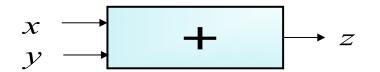
Ver2Smv - A Tool for Automatic Verilog to nuXmv Language Translation for Verification of Digital Circuits

Mishal Minhas, <u>Osman Hasan</u>, Kashif Saghar System Analysis and Verification (SAVe) Lab National University of Sciences and Technology Islamabad, Pakistan

ICEET-2018

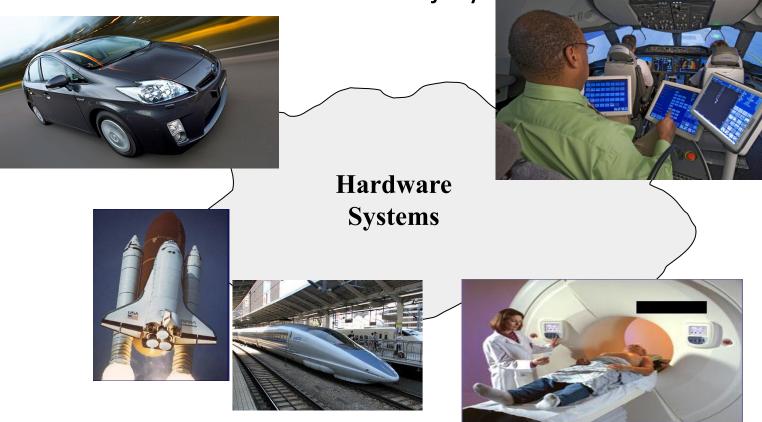
Lahore, Pakistan


- Introduction and Motivation
- Proposed Approach
- □ Formal Analysis of Sequential RTL Verilog
- Conclusions

Hardware Verification

- 8 Bit Adder
- Model
 - VHDL/Verilog
- Test Cases

Test vectors (x,y)	System output (z)	z=x+y
(1,1)	2	True
(4,0)	4	True
(100,100)	200	True
(127,127)	254	True


 Conclusion: The property is true as it is found to be true for all the test vectors used

Safety-Critical Systems

Accuracy is Extremely Important

• Failure can cause loss of life or severe injury

O.Hasan

Faulty Systems can be disastrous

FDIV bug in Intel Pentium (60 Mhz, 90Mhz)

Hardware error in the floating point division unit
 expected precision up to 18 positions
 in practice, only 4 positions
 Example:

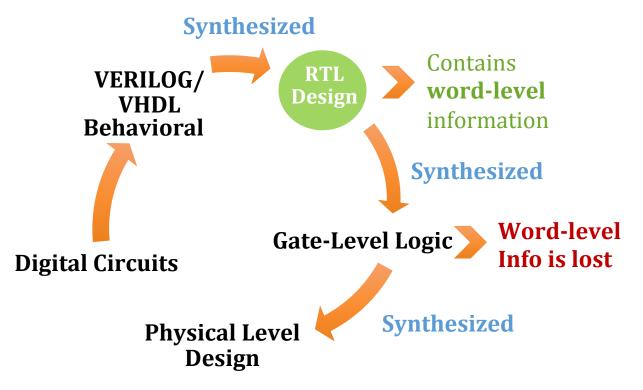
 5505001 / 294911
 wrong answer: 18.66600093

• expected answer: 18.6665197

□ Resulted in net loss of US \$500M to the company in 1994

Solution: Formal Methods

 System Validation technique that bridges the gap between Paper-andpencil proof methods and testing



- Shares their advantages
 - As precise as a mathematical proof can be
 - Computers are used for bookkeeping
- Not as straightforward to use as testing

Formal Verification Methods

- Based on Mathematical techniques
 - Construct a computer-based mathematical model of the VHDL/Verilog model (*implementation*)
 - Use mathematical reasoning to check if the implementation satisfies the properties of interest (*specifications or assertions*) in a computerized environment

Problem Description

MODULE counter_cell(carry_in)
VAR
value : boolean;
ASSIGN
init(value) := FALSE;
next(value) := value xor carry_in;
DEFINE
carry_out := value & carry_in;
MODULE main
VAR
bit0 : counter_cell(TRUE);
bit1 : counter_cell(bit0.carry_out);
bit2 : counter cell(bit1.carry out);

Assertions describe how the circuit should behave

LTLSPEC

G F bit2.carry_out

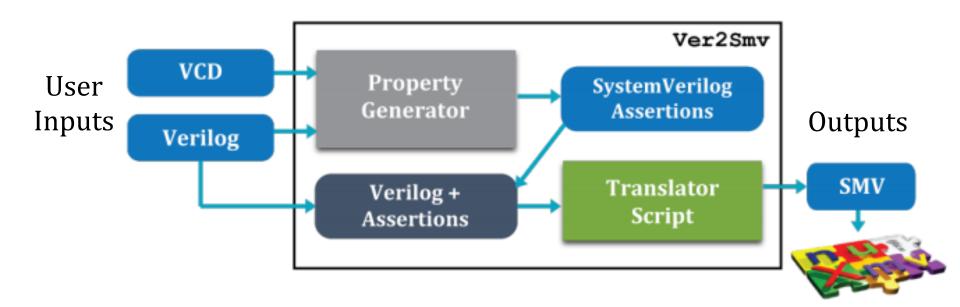
Formal Modeling at the RTL level and writing quality assertions manually requires a lot of effort and time – not effective for industrial applications

Related Work

EBMC – Enhanced Bounded Model Checker

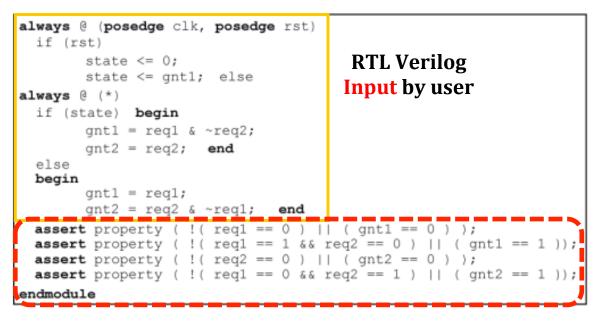
- Reads Verilog designs with properties in LTL or System Verilog Assertions
- Outputs boolean level MC problem in SMV
- Uses BMC and/or k-induction

Limitation: Slow performance

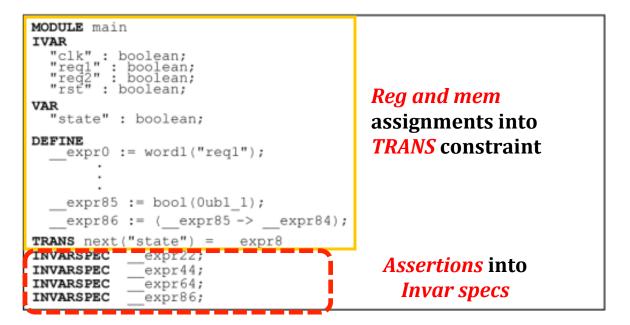

Verilog2smv - Translator for Verilog Designs

- Open source
- Reads Verilog with Assertions
- Outputs a word-level MC problem in SMV

Limitation: Assertions are written manually by user


Proposed Approach

Generates the SystemVerilog Assertions and then translates the circuit's implementation and assertions to SMV model for automatic formal verification


Formal Analysis of Sequential RTL Verilog

Sequential Circuit

Assertions generated automatically

Translated SMV Model

Conclusions

- Extensive **Circuit Simulations** require heavy computations and can still result in faulty hardware and uncertainties
- Formal analysis of digital circuits require a formal model with desired properties
 - Writing a circuit's formal model **manually is ineffective**
 - Property specification requires effort and time
- Proposed methodology presents a tool to **automate** this process that ensures **minimum user involvement** with **complete verification**

Thanks!

SCHOOL OF ELECTRICAL ENGINEERING & COMPUTER SCIENCE (SEECS)

O.Hasan

13