

Reliability Block Diagrams based Analysis: A Survey

O. Hasan¹, W. Ahmed¹ S. Tahar² and M.S. Hamdi³

¹National University of Sciences and Technology, <u>Islamabad Pakistan</u>
²Concordia University, Montreal, Canada
³Ahmed Bin Mohammed Military College, Doha, Qatar

ICNAAM 2014 Rhodes, Greece

Reliability Block Diagrams

Analysis Techniques Example: RBD based Analysis of a simple Oil and Gas Pipeline

Conclusions

Reliability

- A measure of the <u>continuity of service</u> ■ Probability that a system performs its intended function until some time t without failing $R(t) = Pr(X > t) = 1 - Pr(X \le t) = 1 - F_X(t)$
- X: random variable that models the time to failure of the system
 - Commonly used Distributions
 - Exponential
 - Weibul

Reliability Block Diagrams

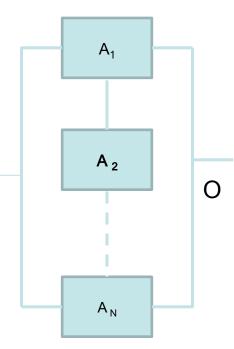
Used to asses the reliability of a complex system

- Partition the system into sub-blocks and connectors (RBD)
- □ Find the failure rates of sub-blocks
- □ Judge the failure characteristics of the overall system
 - failure rates of individual components
 - RBD configuration

The overall system failure happens if all the paths for successful execution fail

Add more parallelism to meet the reliability goals

Series Reliability Block Diagram

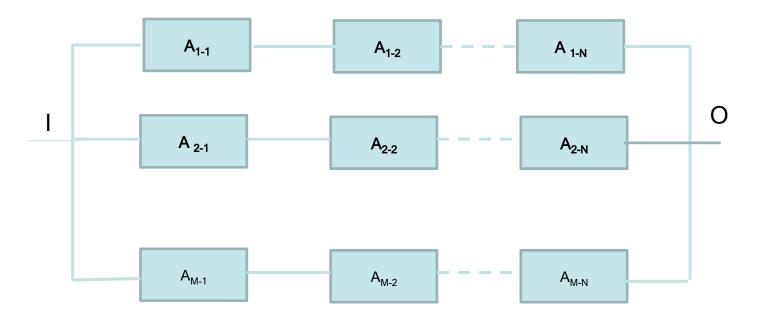

The overall system is reliable only if all of its components are functioning reliably

If A_i(t) are the mutually independent events corresponding to i serially-connected components then

$$R_{series}(t) = Pr(A_1(t) \cap A_2(t) \cap A_3(t) \cdots \cap A_N(t)) = \prod_{i=1}^{n} R_i(t)$$

Ν

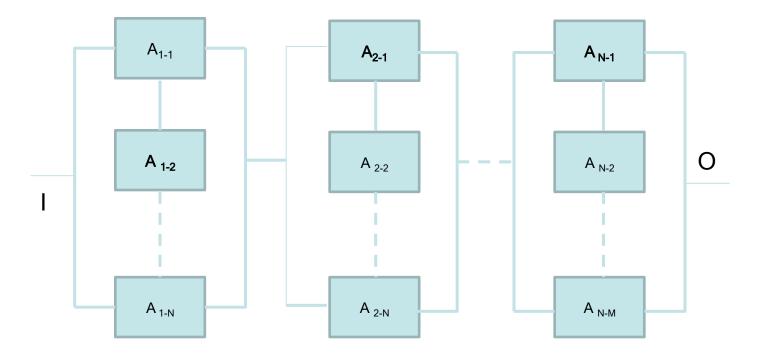
Parallel Reliability Block Diagrams



The overall system reliability mainly depends on the component with the maximum reliability

If A_i(t) are the mutually independent events corresponding to *i parallel-connected* components then

$$R_{parallel}(t) = Pr(A_1 \cup A_2 \cup A_3 \cdots \cup A_N) = 1 - \prod_{i=1}^N (1 - R_i(t))$$


Series-Parallel Reliability Block Diagrams

A combination of both series and parallel RBD

$$R_{Series-Parallel} = Pr(\bigcap_{i=1}^{N} \bigcup_{j=1}^{M} A_{ij}) = \prod_{i=1}^{N} (1 - \prod_{j=1}^{M} (1 - R_{ij}(t)))$$

Parallel- Series Reliability Block Diagrams

$$R_{Parallel-Series} = Pr(\bigcup_{i=1}^{M} \bigcap_{j=1}^{N} A_{ij}) = 1 - \prod_{i=1}^{M} (1 - \prod_{j=1}^{N} (R_{ij}(t)))$$

Example: Reliability Analysis of Oil and Gas Pipelines

There are tens of thousands of miles long oil and gas pipelines around the world

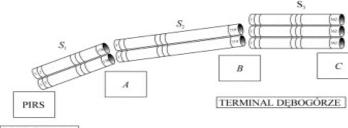
□ Some of them aging and are becoming more and more susceptible to failures

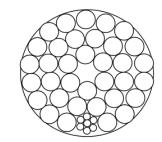
Very important to rigorously analyze their reliability and thus plan timely replacements and maintenance

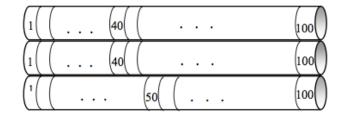
Methane Gas Leakage on the Deepwater Horizon oil rig - April 2010

□ Killed 11 workers

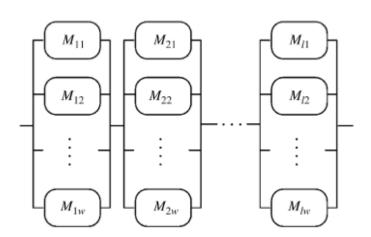
- Destroyed and sank the rig
- Caused millions of gallons of oil to pour into the Gulf of Mexico
- Took three months to bring the situation under control
- Damage to marine and wildlife habitats







Reliability Analysis of Pipelines


Partitioning the given pipeline into segments and constructing its equivalent reliability block diagram (RBD)

PORT GDYNIA

RBD Analysis Techniques

Paper-and-Pencil Proof Methods

Simulation

Theorem Proving

Paper-and-Pencil Proof Methods

Construct a RBD of the given system on Paper

- Analytically analyze the overall reliability of the given system on paper
 - Already verified RBD relationships
 - Distribution functions of the failure modeling random variables

Error Prone

Manual manipulation and simplification

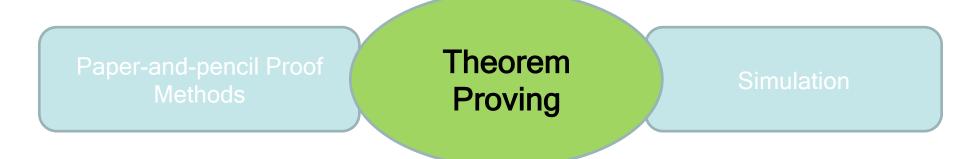
Missing assumptions

Computer Simulations

Generate samples from the Exponential and Weibull random variables to model the reliabilities of the sub-modules

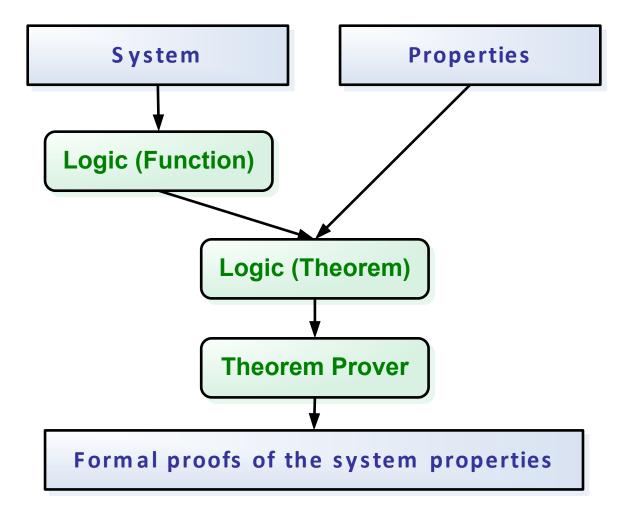
Compute the overall reliability of the given system based on the already verified RBD relationships

Error Prone


- Pseudo random Numbers
- Computer arithmetic
- Numerical techniques

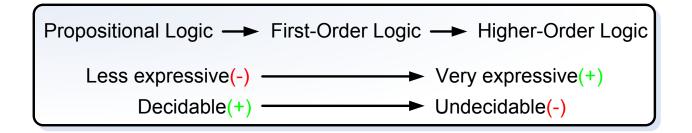
Inaccuracies in RBD based analysis

A severe limitation in the case of safety-critical applications like oil and gas pipelines
 May endanger human and animal life
 Lead to a significant financial loss


Theorem Proving

 Bridges the gap between Paper-and-pencil proof methods and simulation

- Shares their advantages
 - As precise as a mathematical proof can be
 - Computers are used for book-keeping
- Not as straightforward to use as simulation


Theorem Proving

Logic

Study of drawing conclusions (reasoning)

- Propositional logic
 - Supports statements that can be true or false
- □ First-order logic (Predicate logic)
 - Quantification over variables (\forall : For all, \exists : there exists)
- Higher-order logic
 - Quantification over sets and functions

Theorem Prover

A theorem prover consists of A notation (Syntax)

□ A small set of fundamental axioms (facts)

■ Example: (¬¬A) ⇔ A

□ A small set of deduction rules

• Example: Given $(A \rightarrow B)$ and A, we can deduce B

Soundness is assured as every new theorem must be created from

□ The basic axioms and primitive inference rules

□ Any other already proved theorems (Theory Files)

Theorem Proving -Example: Natural Log of Product

```
val LN_MUL = store_thm("LN_MUL",
(--`\forall x y. 0 < x \land 0 < y \Rightarrow (\ln (x * y) = \ln x + \ln y)`--),
```

```
REPEAT GEN_TAC THEN STRIP_TAC THEN
ONCE_REWRITE_TAC[GSYM EXP_INJ] THEN
REWRITE_TAC[EXP_ADD] THEN
SUBGOAL_THEN (--`&0 < x * y`--) ASSUME_TAC THENL
[MATCH_MP_TAC REAL_LT_MUL THEN ASM_REWRITE_TAC[],
EVERY_ASSUM(fn th => REWRITE_TAC[ONCE_REWRITE_RULE[GSYM EXP_LN]
th])]);
```

```
\begin{bmatrix} \mathsf{EXP}_\mathsf{INJ} \end{bmatrix} \forall x \ y. \ (\exp x = \exp y) \Leftrightarrow (x = y) \\ \begin{bmatrix} \mathsf{EXP}_\mathsf{ADD} \end{bmatrix} \forall x \ y. \ \exp(x + y) = \exp x^* \exp y \\ \begin{bmatrix} \mathsf{EXP}_\mathsf{LN} \end{bmatrix} \forall x. \ (\exp(\ln x) = x) \Leftrightarrow 0 < x \\ \end{bmatrix}
```

Formal Reliability Analysis -Requirements

Formalization of Probability Theory is the foremost requirement for reliability analysis

□ Formalization of Continuous Random Variables

Recursive Definitions for Reliability Block Diagrams

Have to use a Higher-order Logic Theorem Prover

Formal Reliability Analysis of a Simple Oil and Gas Pipeline using Theorem Proving - CICM 2014

Formalization of Reliability in HOL

- Formalization of Series RBD in HOL
- □ Formal RBD based analysis of a simple pipeline

Generic expressions involving
 any number of segments
 arbitrary failure rates
 All assumptions are explicitly available

Summary

Criteria	Paper- and-Pencil Proof	Simulation	Higher-order- logic Proof Assistants
Expressiveness			
Accuracy		×	
Automation	X		

The precision of results is very important while analyzing safety-critical domains

Theorem Proving can guarantee precise reliability analysis

Future Recommendations

□ Formalization of other RBDs

□ Parallel, series-parallel and parallel-series

More case studies
 Virtual Data Centers
 More complex Pipelines

Thanks!

□ For More Information

- □Visit our website
 - http://save.seecs.nust.edu.pk
- - osman.hasan@seecs.nust.edu.pk

