
Formal Verification of A Domain Specific Language for
Run-time Adaptation

Shahid Khan 1 Faiq Khalid 2 Osman Hasan 1 João M.P.
Cardoso 3

1School of Electrical Engineering & Computer Science
National University of Sciences & Technology, Islamabad, Pakistan

2Department of Computer Engineering
Vienna University of Technology, Vienna, Austria

3Faculty of Engineering, University of Porto, Porto, Portugal

SysCon-2018
Vancouver, Canada

April 24, 2018

O. Hasan (NUST) Formal Verification of DSL April 24, 2018 1 / 25

Outline

1 Introduction and Motivation

2 Proposed Methodology

3 Case Studies
PAST Algorithm
Context Aware Application
Stereo Navigation

4 Conclusions

O. Hasan (NUST) Formal Verification of DSL April 24, 2018 2 / 25

Run-Time Adaptations

Most of the embedded/IoTs based systems have very high
performance requirements, which vary with changing environments

Run-time software adaptations allow us to update both functional and
nonfunctional behavior of the software at runtime

O. Hasan (NUST) Formal Verification of DSL April 24, 2018 3 / 25

Run-Time Adaptations

Most of the embedded/IoTs based systems have very high
performance requirements, which vary with changing environments

Run-time software adaptations allow us to update both functional and
nonfunctional behavior of the software at runtime

O. Hasan (NUST) Formal Verification of DSL April 24, 2018 3 / 25

Run-Time Adaptations

General-purpose programming languages, like C/C++/Java, do not
support programming of dynamic adaptive behaviors

Domain specific languages (DSLs) cater for this by partitioning
software development into static and dynamic parts

Rules govern the adaptation behavior

O. Hasan (NUST) Formal Verification of DSL April 24, 2018 4 / 25

Run-Time Adaptations

General-purpose programming languages, like C/C++/Java, do not
support programming of dynamic adaptive behaviors

Domain specific languages (DSLs) cater for this by partitioning
software development into static and dynamic parts

Rules govern the adaptation behavior

O. Hasan (NUST) Formal Verification of DSL April 24, 2018 4 / 25

Run-Time Adaptations

General-purpose programming languages, like C/C++/Java, do not
support programming of dynamic adaptive behaviors

Domain specific languages (DSLs) cater for this by partitioning
software development into static and dynamic parts

Rules govern the adaptation behavior

O. Hasan (NUST) Formal Verification of DSL April 24, 2018 4 / 25

Rule Conflict Analysis

Incorrect specification of rules may lead to Reachability Issues or
Conflicts or even functional bugs

Several rules can be defined in a single adaptation strategy
Rules can run sequentially or concurrently

Example

O. Hasan (NUST) Formal Verification of DSL April 24, 2018 5 / 25

Rule Conflict Analysis Approaches

Manual manipulation of automata based models

Human Error Prone
May miss conflicts

Software testing

In-exhaustive
May miss conflicts

O. Hasan (NUST) Formal Verification of DSL April 24, 2018 6 / 25

Rule Conflict Analysis Approaches

Manual manipulation of automata based models

Human Error Prone
May miss conflicts

Software testing

In-exhaustive
May miss conflicts

O. Hasan (NUST) Formal Verification of DSL April 24, 2018 6 / 25

Model Checking

O. Hasan (NUST) Formal Verification of DSL April 24, 2018 7 / 25

Model Checking

O. Hasan (NUST) Formal Verification of DSL April 24, 2018 7 / 25

Proposed Methodology

O. Hasan (NUST) Formal Verification of DSL April 24, 2018 8 / 25

Example: Formal Model of a DSL Strategy

Values are assigned to the variables Non-deterministically

O. Hasan (NUST) Formal Verification of DSL April 24, 2018 9 / 25

Example: Formal Model of a DSL Strategy

Values are assigned to the variables Non-deterministically

O. Hasan (NUST) Formal Verification of DSL April 24, 2018 9 / 25

Formal Verification

Identified 5 Properties

We believe that the successful verification of these properties would
ensure that there are no functional bugs, including conflicts, in the
given strategy

O. Hasan (NUST) Formal Verification of DSL April 24, 2018 10 / 25

Property 1: Reachability

Definition

Every state of the model has at least one incoming and one outgoing
transition

Example:

Adjusts the number of samples considered by a Fast Fourier Transform
(FFT) algorithm from 2,048 to 512 whenever CPU load increases from
80%

Example

G (CPU LOAD < 80 & FFT.FftNrSamples = 512)

-> F (FFT.FftNrSamples = 2048))

O. Hasan (NUST) Formal Verification of DSL April 24, 2018 11 / 25

Property 1: Reachability

Definition

Every state of the model has at least one incoming and one outgoing
transition

Example:

Adjusts the number of samples considered by a Fast Fourier Transform
(FFT) algorithm from 2,048 to 512 whenever CPU load increases from
80%

Example

G (CPU LOAD < 80 & FFT.FftNrSamples = 512)

-> F (FFT.FftNrSamples = 2048))

O. Hasan (NUST) Formal Verification of DSL April 24, 2018 11 / 25

Property 2: Trigger Similarity

Definition

Multiple triggering conditions occurring simultaneously do not lead to
contradictory behavior

Example:

Adaptation1 and Adaptation2 are contradictory

Example

G !(Adaptation1 & Adaptation2)

O. Hasan (NUST) Formal Verification of DSL April 24, 2018 12 / 25

Property 2: Trigger Similarity

Definition

Multiple triggering conditions occurring simultaneously do not lead to
contradictory behavior

Example:

Adaptation1 and Adaptation2 are contradictory

Example

G !(Adaptation1 & Adaptation2)

O. Hasan (NUST) Formal Verification of DSL April 24, 2018 12 / 25

Property 3: Action Similarity

Definition

Concurrent or sequential rules do not access the same resources or
parameters

Example:

Two concurrent rules memory and energy should not set a single
parameter energyBudget with different values

Example

G (r1.energyBudget = r2.energyBudget)

O. Hasan (NUST) Formal Verification of DSL April 24, 2018 13 / 25

Property 3: Action Similarity

Definition

Concurrent or sequential rules do not access the same resources or
parameters

Example:

Two concurrent rules memory and energy should not set a single
parameter energyBudget with different values

Example

G (r1.energyBudget = r2.energyBudget)

O. Hasan (NUST) Formal Verification of DSL April 24, 2018 13 / 25

Property 4: Overriding Rules

Definition

No rules should become redundant under any triggering conditions

Example:

Three energy rules that set energy state of the system to A , B , C
based upon whether the energy level is less than 10, 20 or 30,
respectively

Example

G (EnergyLevel < 10 -> X state = A)

G (EnergyLevel < 20 -> X state = B)

G (EnergyLevel < 30 -> X state = C)

O. Hasan (NUST) Formal Verification of DSL April 24, 2018 14 / 25

Property 4: Overriding Rules

Definition

No rules should become redundant under any triggering conditions

Example:

Three energy rules that set energy state of the system to A , B , C
based upon whether the energy level is less than 10, 20 or 30,
respectively

Example

G (EnergyLevel < 10 -> X state = A)

G (EnergyLevel < 20 -> X state = B)

G (EnergyLevel < 30 -> X state = C)

O. Hasan (NUST) Formal Verification of DSL April 24, 2018 14 / 25

Property 5: Incompatible Requirements

Definition

Ensure that different adaptation requirements do not contradict each other

Example:

Rule r1 moves the system to a low energy state and another rule r2
tries to increase its computation rate

Example

G !(r1.state=LowEnergy & r2.state=HighRate)

O. Hasan (NUST) Formal Verification of DSL April 24, 2018 15 / 25

Property 5: Incompatible Requirements

Definition

Ensure that different adaptation requirements do not contradict each other

Example:

Rule r1 moves the system to a low energy state and another rule r2
tries to increase its computation rate

Example

G !(r1.state=LowEnergy & r2.state=HighRate)

O. Hasan (NUST) Formal Verification of DSL April 24, 2018 15 / 25

Outline

1 Introduction and Motivation

2 Proposed Methodology

3 Case Studies
PAST Algorithm
Context Aware Application
Stereo Navigation

4 Conclusions

O. Hasan (NUST) Formal Verification of DSL April 24, 2018 16 / 25

PAST Algorithm

Energy aware CPU clock setting algorithm

O. Hasan (NUST) Formal Verification of DSL April 24, 2018 17 / 25

PAST Algorithm

Energy aware CPU clock setting algorithm

O. Hasan (NUST) Formal Verification of DSL April 24, 2018 17 / 25

PAST Algorithm

Two strategies

Speed Bound

Selects the clock speed in such a way that it remains within the given
bound
Only one rule so no conflicts found

Energy Optimization

CPU operates at the minimum clock speed during the idle time
Failed the reachability property

PAST algorithm does not select the clock speed when the run percent
lies between 0.5 and 0.7, which means that the CPU does not operate
if it remains 50% to 70% active

O. Hasan (NUST) Formal Verification of DSL April 24, 2018 18 / 25

PAST Algorithm

Two strategies

Speed Bound

Selects the clock speed in such a way that it remains within the given
bound
Only one rule so no conflicts found

Energy Optimization

CPU operates at the minimum clock speed during the idle time
Failed the reachability property

PAST algorithm does not select the clock speed when the run percent
lies between 0.5 and 0.7, which means that the CPU does not operate
if it remains 50% to 70% active

O. Hasan (NUST) Formal Verification of DSL April 24, 2018 18 / 25

Outline

1 Introduction and Motivation

2 Proposed Methodology

3 Case Studies
PAST Algorithm
Context Aware Application
Stereo Navigation

4 Conclusions

O. Hasan (NUST) Formal Verification of DSL April 24, 2018 19 / 25

Context Aware Application

Human activity monitoring and then adjusts its behavior accordingly

O. Hasan (NUST) Formal Verification of DSL April 24, 2018 20 / 25

Context Aware Application

Strategy Name Number of Rules Failing Property Failing Rules Time

Strategy 2 2
Reachability 2 0.06

Action Similarity 2 0.03

Strategy 3 4

Reachability 4 0.05
Reachability 2 0.02
Reachability 2 0.02
Reachability 2 0.11

Overriding Rules 2 0.02

Strategy 4 2
Reachability 1 0.03
Reachability 1 0.03
Reachability 1 0.05

Incompatible Requirement 2 0.05

Strategy 5 3
Reachability 1 0.03
Reachability 1 0.02

Incompatible Requirements 2 0.03
Action Similarity 2 0.03

Strategy 6 4

Reachability 1 0.02
Reachability 1 0.03

Action Similarity 2 0.02
Action Similarity 2 0.06
Overriding Rules 2 0.05

O. Hasan (NUST) Formal Verification of DSL April 24, 2018 21 / 25

Outline

1 Introduction and Motivation

2 Proposed Methodology

3 Case Studies
PAST Algorithm
Context Aware Application
Stereo Navigation

4 Conclusions

O. Hasan (NUST) Formal Verification of DSL April 24, 2018 22 / 25

Stereo Navigation

Can be used to perform the navigation related activities with the help of a
camera and a map

Strategy Name Number of Rules Failing Property Failing Rules Time

Strategy 6 3
Action Similarity 2 0.52
Action Similarity 2 0.38

O. Hasan (NUST) Formal Verification of DSL April 24, 2018 23 / 25

Conclusion

Summary

A symbolic model checking based methodology for formal rule conflict
and reachability analysis of a domain specific language (DSL)
Identification of formal properties for detecting rule conflicts and
reachability problems
Bugs identified in 3 real-world case studies that were taken from the
PhD thesis that proposed DSLs for runtime adaptations

Future Work

Analyzing other embedded domain languages, e.g., LAnguage for
Reconfigurable Architectures (LARA)

O. Hasan (NUST) Formal Verification of DSL April 24, 2018 24 / 25

Conclusion

Summary

A symbolic model checking based methodology for formal rule conflict
and reachability analysis of a domain specific language (DSL)
Identification of formal properties for detecting rule conflicts and
reachability problems
Bugs identified in 3 real-world case studies that were taken from the
PhD thesis that proposed DSLs for runtime adaptations

Future Work

Analyzing other embedded domain languages, e.g., LAnguage for
Reconfigurable Architectures (LARA)

O. Hasan (NUST) Formal Verification of DSL April 24, 2018 24 / 25

Thanks!

save.seecs.nust.edu.pk

O. Hasan (NUST) Formal Verification of DSL April 24, 2018 25 / 25

	Introduction and Motivation
	Proposed Methodology
	Case Studies
	PAST Algorithm
	Context Aware Application
	Stereo Navigation

	Conclusions

