Towards Formal Reasoning about Molecular Pathways in HOL

Sohaib Ahmad, Osman Hasan and Umair Siddique

System Analysis & Verification (SAVe) Lab,
National University of Sciences and Technology (NUST),
Islamabad, Pakistan

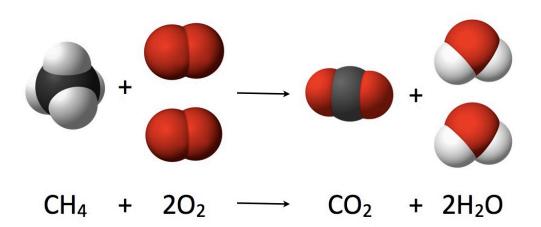
WETICE/VSC 2014

Parma, Italy June 25, 2014

Outline

■ Introduction

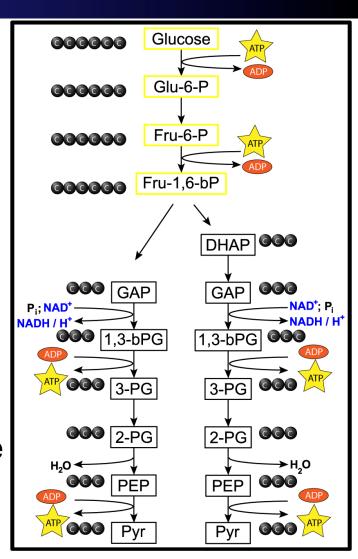
- Proposed Methodology
- Formalization Details


□ Case Studies

□ Conclusions

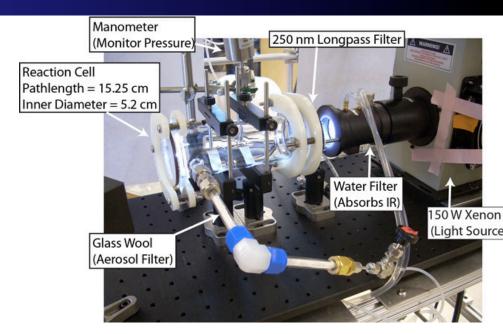
Chemical Reactions

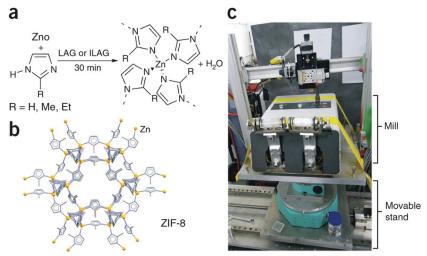
☐ Transformation of one set of molecules to another


- □ Example: Burning of natural gas
 - Methane + Oxygen → Carbon Dioxide + Water

Molecular Pathways

■ Series of chemical reactions


- ☐ Study of Molecular Pathways (Pathway Analysis)
 - ■What can be obtained from a bunch of reacting molecules
 - □ Vital role in developing effective drugs for various human infectious diseases
 - Critical System

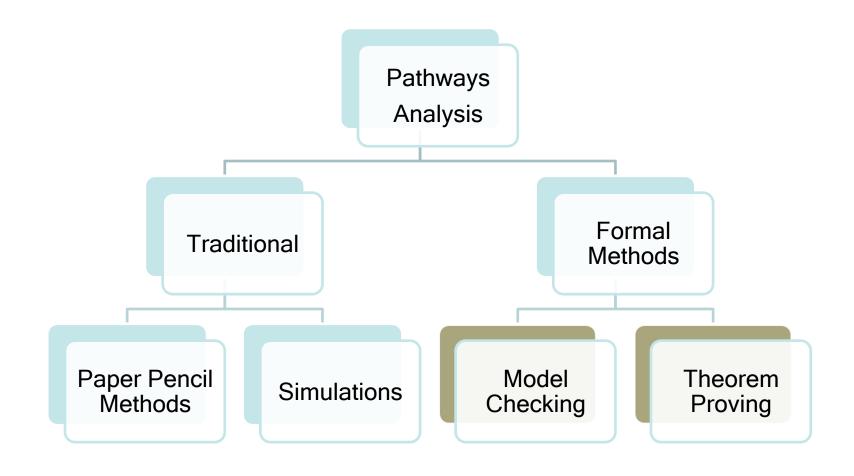


Glucose to Pyruvate

Molecular Pathway Analysis

- □ Traditionally done in a wet-lab setting
- **□** Slow
- Expensive
- Unpredictable Behavior?

Off-Lab Molecular Pathway Analysis Requirements


- Deduction System
 - ☐ To reason about the reaction outcomes
- Reaction Kinetics
 - ☐ Concentration of molecules at any time
 - Modeled by Differential Equations

$$\frac{dn(t)}{dt} = \lambda * n(t)$$

- □ Stochastics
 - □ Probability that a molecule decays within a small time interval

$$p_1 = \lambda \Delta t$$

Types of Analysis

Pathways Analysis

Criteria	Paper- and-Pencil Proof	Simulation	Model Checking	Higher-order- logic Proof Assistants
Expressiveness	✓		×	
Accuracy	₹?	×	$\overline{\checkmark}$	
Automation	*		✓	×

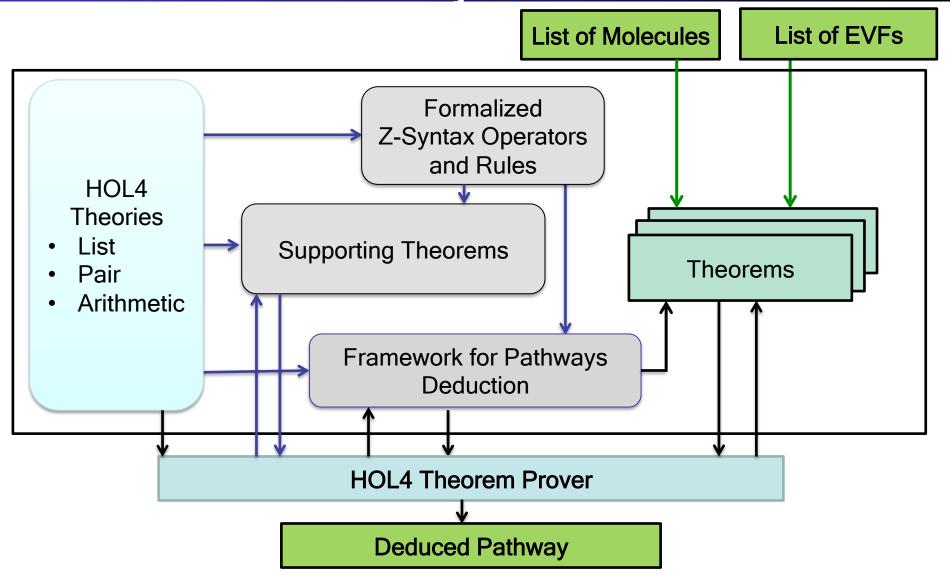
Contribution of this paper

- Deduction System
 - ■To reason about the reaction outcomes
- Reaction Kinetics
 - ☐ Concentration of molecules at any time
 - Modeled by Differential Equations

$$\frac{dn(t)}{dt} = \lambda * n(t)$$

- □ Stochastics
 - □ Probability that a molecule decays within a small time interval

$$p_1 = \lambda \Delta t$$


HOL4 Theorem Prover

- ☐ Higher-order-logic Proof Assistant
 - □ Notation: ML
 - □Small Core:
 - 5 basic axioms
 - 8 primitive inference rules
- Numerous automatic proof procedures are available
- Supports Reasoning about
 - □ Real Numbers
 - □ Calculus
 - □ Probability

Molecular Pathways in HOL4

- ■Z-Syntax provides formal semantics to represent molecular pathways
 - □ Computer Implementable
 - ☐ Based on 3 operators and 4 inference rules

Proposed Approach for Analysis of Molecular Pathways

Z-Syntax Operators in HOL4

- □ Z-Interaction: (*)
 - ☐ Represents reaction between molecules
 - ☐ Single List represents interacting molecules
- □Z-Conjunction: (&)
 - □ Represents non-reacting molecules
 - ☐ List of Lists represents a bag of molecules
- ■Z-Conditional: (→)
 - □ Represents the occurrence of a net forward reaction under a given condition
 - Used to express Empirically Valid Formulae (EVFs)

Formalizing Z-Syntax in HOL4

- ☐ Consumption of Molecules.
 - ☐ Reactants are always consumed in a reaction
 - ☐ Deleting a list element shows molecule consumption

□ Elimination of Z-Conjunction allows deducing a single molecule from a bag (list) of molecules

Pathway Deduction

- Automatic deduction of Pathways
 - ☐ Based on Z-Syntax Definitions
 - □ Recursively checks for reaction possibilities between all the available molecules and deduces new molecules based on given EVFs.
- ☐ Based on 5 major functions

Case Studies

- Pathway Leading to TP53 Degradation
 - □TP53, a tumor suppressing gene
 - regulates cell division, inactivated by MDM2 in normal cells
 - ☐ Repairs the cell or stops the damage from spreading

```
TP53 & TP53 & MDM2 & U & P ⊢ d(TP53)
```

- ☐F1,6P formation
 - ☐ Compound formed during Glycolysis
 - Research being done on its usefulness in Iron Chelation

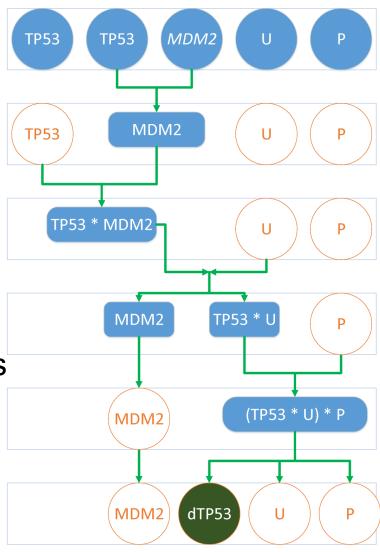
Glc & HK & GPI & PFK & ATP & ATP ⊢ F1,6P

TP53 Degradation

Theorem: TP53 Degradation

```
    □ DISTINCT [TP53; dTP53; P; U; iMDM2; MDM2] ⇒

z_conj_elim (z_deduction


[[TP53]; [TP53]; [iMDM2]; [U]; [P]]

(([TP53; MDM2], [[MDM2]]);
 ([MDM2; TP53], [[TP53; MDM2]]);
 ([TP53; MDM2; U], [[TP53; U]; [MDM2]]);
 ([TP53; U; P], [[dTP53]; [U]; [P]]))] [dTP53]
```

= [[dTP53]]

Coding Statistics:

- □ Z-Syntax & Framework 1000 lines
- Deducing TP53 Pathway <10 lines</p>
 - □ Automatically done using a TACTIC developed as part of this work

Conclusions

- ☐ Formalization of Z-Syntax in HOL4
- ☐ Framework for Pathways deduction
- Advantages
 - □ Accurate Results
 - ☐ Reduction in user-effort while formally analyzing the molecular pathways
 - ☐ Helpful in discovery of different pathways
- ☐ Case Studies: Pathway analysis of TP53, F1,6P

Future Directions

- Implementation of an interactive GUI
- ☐ Formal Verification of Deduction Framework
 - ☐ Generic Properties

□ Include Reaction Kinetics, Stochastics and Diffusion

Thanks!

Questions

www.save.seecs.nust.edu.pk

20