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Random Variables

Functions that map random events to numbers

Discrete random variables
Attain a countable number of values from an interval of real
numbers
Example: Dice

Interval: [1,6]
Possible Outcomes: {1, 2, 3, 4, 5, 6}

Continuous random variables
Attain all values from an interval of real numbers
Example: Arithmetic Roundoff Error [-0.5, 0.5]

Interval [-0.5, 0.5]
Possible Outcomes: Infinite or Uncountable
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Probabilistic Properties

Most probabilistic properties associated with a random
variable can be expressed in terms of its Cumulative
Distribution Function (CDF)

Accepts a real number x
Returns the probability that the random variable is less than
or equal to x

CDF (R) = P(R ≤ x)

CDF can be used to characterize both Discrete and
Continuous random variables
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Simulation

Model: Using approximate random variable functions

Verification: Analyzing a large number of samples

Strengths

User friendliness

Can handle analytically complex random systems

Weaknesses

Inaccurate results

Enormous CPU time requirements

6 / 24



Simulation

Model: Using approximate random variable functions

Verification: Analyzing a large number of samples

Strengths

User friendliness

Can handle analytically complex random systems

Weaknesses

Inaccurate results

Enormous CPU time requirements

6 / 24



Simulation

Model: Using approximate random variable functions

Verification: Analyzing a large number of samples

Strengths

User friendliness

Can handle analytically complex random systems

Weaknesses

Inaccurate results

Enormous CPU time requirements

6 / 24



Simulation

Model: Using approximate random variable functions

Verification: Analyzing a large number of samples

Strengths

User friendliness

Can handle analytically complex random systems

Weaknesses

Inaccurate results

Enormous CPU time requirements

6 / 24



Probabilistic Model Checking

Model: Probabilistic state machine

Verification: Exhaustive

Strengths

Precise answers

Verification is automatic

Weaknesses

State space explosion problem
Can be addressed through simulation-based methods at
the cost of accuracy

Limited to systems that are memoryless (Markov Chains)
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Probabilistic Verification and Theorem Proving

Model: Using Higher-Order-Logic functions for random
variables

Verification: Theorem Proving

Strengths

Precise answers
High Expressiveness

Weaknesses

Significant user interaction
Immature: A huge amount of formalization is required
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Related Work

σ-fields and Probability [Nedzusiak, 1989]
The σ-Additive Measure Theory [Bialas, 1990]

Theorem proving with the Real Numbers [Harrison, 1996]

Formal verification of Probabilistic Algorithms in HOL
[Hurd, 2002]

Deterministic functions with access to a random Boolean
Sequence
Formalization of Discrete Random Variables

Proofs of Randomized Algorithms in Coq [Audebaud et. al,
2006]

There is no machine-checked formalization of Continuous
random variables
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Formalization of Continuous Random Variables

Framework for the formalization of Continuous random
variables for which CDF exists in a closed mathematical
form

Minimize the formalization and verification effort
Reasoning based on Measure and Probability theories is
not required

The HOL Theorem Prover
Higher-Order-Logic interactive Theorem Prover
Hurd’s framework for the verification of probabilistic
algorithms
Comprehensive library of theorems including Harrison’s
theories on real analysis
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Formalization of Continuous Random Variables

Sampling algorithms are nonterminating
Tedious formalization and verification

Inverse Transform Method
Extensively used method in Non-uniform random number
generation

Standard Uniform random number generator generates
uniformly distributed random real numbers in the interval
[0,1]
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Formalization of Standard Uniform Random Variable

Continuous Uniform random variable in the interval [0,1]

Sampling Algorithm using a sequence of Coin Flips (Ck )

U =
∞∑

k=1

(
Ck

2k
), where Ck = 1 if k th coin returns a head else 0

{H, H, T, H, · · · } → ( 1
21 + 1

22 + 0
23 + 1

24 + · · · ) = (0.1101 · · · )2

Standard Uniform random variable in HOL
Step 1. Discrete Standard Uniform random variable

Un =
n∑

k=1

(
Bk

2k
), where Bk = 1 if k th random bit is a True else 0

Step 2. As n tends to infinity: U = lim
n→∞

Un
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Verification of Standard Uniform Random Variable

Theorem: CDF of Standard Uniform Random Variable

` ∀x . P(U≤ x) =





0 if x < 0;
x if 0 ≤ x < 1;
1 if 1 ≤ x .

Proof Sketch
Verify CDF for the discrete Standard Uniform random
variable
Take the limit as n approaches infinity
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Formalization and Verification of CDF

Modeled as a higher-order-logic function FX (a)
Accepts: Random Variable X, A Real Number a
Returns: Probability P(X ≤ a)

Theorem: CDF Properties

Bounds ` ∀a, X. 0 ≤ FX(a) ≤ 1
Monotonic ` ∀a, b, X. (a < b) ⇒ FX(a) ≤ FX(b)

Interval Probability ` ∀a, b, X. (a < b) ⇒
P(a < X≤ b) = FX(b)− FX(a)

Positive Infinity ` ∀X. lim
n→∞FX(n) = 1

Negative Infinity ` ∀X. lim
n→−∞FX(n) = 0

Right Continuous ` ∀a, X. lim
n→a+

FX(n) = FX(a)

Limit from the Left ` ∀a, X. lim
n→a−

FX(n) = P(X < a)

Verification of Probabilistic Properties in HOL, IFM 07
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Inverse Transform Method

A random variable, X , with well-defined CDF F

X = F−1(U)

U = Standard Uniform random variable
F−1 = Inverse function of F

Predicate Input Data type True

is_cdf g (real → real) If g is a valid CDF
inv_fn f , g (real → real) If f is the inverse function of g

Theorem: Inverse Transform Method

` ∀f , g, x . (is _cdf g ) ∧ (inv _fn f g ) ⇒ (Ff (U)(x) = g(x))

Proof utilizes CDF of the Standard Uniform random
variable and CDF properties
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Continuous Random Variables
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Continuous Random Variables

Theorem: Continuous Random Variables
Distribution CDF Random Variable

Exponential(l )
0 x ≤ 0
1− e−lx 0 < x

(λx .− 1
l ln (1 − x))U

Uniform(a, b)
0 x ≤ a
x−a
b−a a < x ≤ b
1 b < x

(λx .(b − a)x + a)U

Rayleigh(l )
0 x ≤ 0

1− e
−x2

2l2 0 < x
(λx .l

√
−2ln (1 − x))U

Triangular(a)
0 x ≤ 0
2
a(x − x2

2a) x < a
1 a ≤ x

(λx .a(1 −√1 − x))U
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Applications: Continuous Random Variables

Sources of Error in Computer Arithmetic
Uniform random variable

Inter-Arrival and Service times in Telecommunication
Networks

Exponential random variable

Noise signal in Telecommunication Receivers
Rayleigh random variable

Randomized Algorithms

Security Protocols

Machine Learning

and many many more · · ·

22 / 24



Applications: Continuous Random Variables

Sources of Error in Computer Arithmetic
Uniform random variable

Inter-Arrival and Service times in Telecommunication
Networks

Exponential random variable

Noise signal in Telecommunication Receivers
Rayleigh random variable

Randomized Algorithms

Security Protocols

Machine Learning

and many many more · · ·

22 / 24



Conclusions

Summary
Formalization framework for Continuous random variables
in HOL
Simple to use approach
Precise Probabilistic Analysis

Future Work
Verification of Statistical properties (Mean, Variance)
Multiple random variables
Case studies: Suggestions are welcome
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Thank You

More details and HOL sources

HVG Concordia: http://hvg.ece.concordia.ca

Contact: o_hasan@ece.concordia.ca
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