Formalization of Continuous Probability Distributions

Osman Hasan Sofiène Tahar

Hardware Verification Group Concordia University, Montreal, Canada

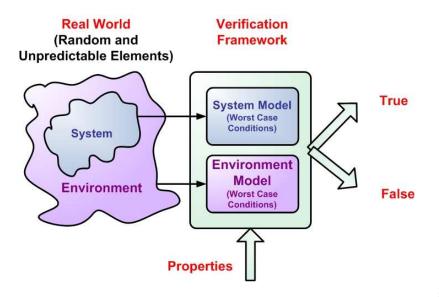
CADE, 2007

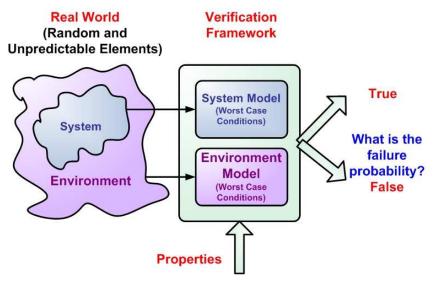
1 Introduction

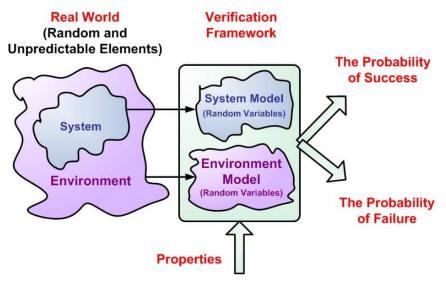
2 Methodology

3 Formalization and Verification Details

4 Conclusions







Random Variables

Functions that map random events to numbers

Discrete random variables

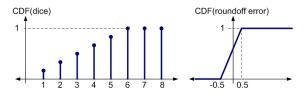
- Attain a countable number of values from an interval of real numbers
- Example: Dice
 - Interval: [1,6]
 - Possible Outcomes: {1, 2, 3, 4, 5, 6}
- Continuous random variables
 - Attain all values from an interval of real numbers
 - Example: Arithmetic Roundoff Error [-0.5, 0.5]
 - Interval [-0.5, 0.5]
 - Possible Outcomes: Infinite or Uncountable

Probabilistic Properties

- Most probabilistic properties associated with a random variable can be expressed in terms of its Cumulative Distribution Function (CDF)
 - Accepts a real number x
 - Returns the probability that the random variable is less than or equal to x

$$CDF(R) = P(R \leq x)$$

CDF can be used to characterize both Discrete and Continuous random variables



- Model: Using approximate random variable functions
- Verification: Analyzing a large number of samples

- Model: Using approximate random variable functions
- Verification: Analyzing a large number of samples

Strengths

- User friendliness
- Can handle analytically complex random systems

- Model: Using approximate random variable functions
- Verification: Analyzing a large number of samples

Strengths

- User friendliness
- Can handle analytically complex random systems

Weaknesses

- Inaccurate results
- Enormous CPU time requirements

- Model: Probabilistic state machine
- Verification: Exhaustive

- Model: Probabilistic state machine
- Verification: Exhaustive

Strengths

- Precise answers
- Verification is automatic

- Model: Probabilistic state machine
- Verification: Exhaustive

Strengths

- Precise answers
- Verification is automatic

Weaknesses

- State space explosion problem
 - Can be addressed through simulation-based methods at the cost of accuracy
- Limited to systems that are memoryless (Markov Chains)

- Model: Using Higher-Order-Logic functions for random variables
- Verification: Theorem Proving

- Model: Using Higher-Order-Logic functions for random variables
- Verification: Theorem Proving

Strengths

- Precise answers
- High Expressiveness

- Model: Using Higher-Order-Logic functions for random variables
- Verification: Theorem Proving

Strengths

- Precise answers
- High Expressiveness

Weaknesses

- Significant user interaction
- Immature: A huge amount of formalization is required

Related Work

- σ-fields and Probability [Nedzusiak, 1989]
- The σ-Additive Measure Theory [Bialas, 1990]
- Theorem proving with the Real Numbers [Harrison, 1996]
- Formal verification of Probabilistic Algorithms in HOL [Hurd, 2002]
 - Deterministic functions with access to a random Boolean Sequence
 - Formalization of Discrete Random Variables
- Proofs of Randomized Algorithms in Coq [Audebaud et. al, 2006]

Related Work

- σ-fields and Probability [Nedzusiak, 1989]
- The σ-Additive Measure Theory [Bialas, 1990]
- Theorem proving with the Real Numbers [Harrison, 1996]
- Formal verification of Probabilistic Algorithms in HOL [Hurd, 2002]
 - Deterministic functions with access to a random Boolean Sequence
 - Formalization of Discrete Random Variables
- Proofs of Randomized Algorithms in Coq [Audebaud et. al, 2006]

There is no machine-checked formalization of Continuous random variables

- Framework for the formalization of Continuous random variables for which CDF exists in a closed mathematical form
- Minimize the formalization and verification effort
 - Reasoning based on Measure and Probability theories is not required

- Framework for the formalization of Continuous random variables for which CDF exists in a closed mathematical form
- Minimize the formalization and verification effort
 - Reasoning based on Measure and Probability theories is not required
- The HOL Theorem Prover
 - Higher-Order-Logic interactive Theorem Prover
 - Hurd's framework for the verification of probabilistic algorithms
 - Comprehensive library of theorems including Harrison's theories on real analysis

Sampling algorithms are nonterminating

Tedious formalization and verification

Sampling algorithms are nonterminating

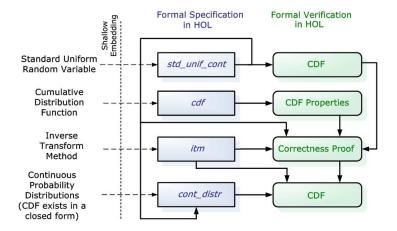
Tedious formalization and verification

Inverse Transform Method

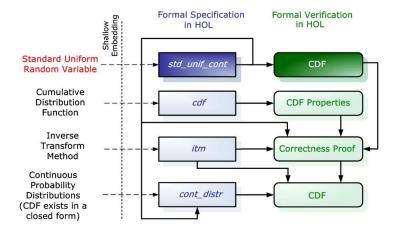
 Extensively used method in Non-uniform random number generation

 Standard Uniform random number generator generates uniformly distributed random real numbers in the interval [0,1]

Methodology



Methodology



Formalization of Standard Uniform Random Variable

Continuous Uniform random variable in the interval [0,1]
 Sampling Algorithm using a sequence of Coin Flips (C_k)

$$U = \sum_{k=1}^{\infty} (\frac{C_k}{2^k})$$
, where $C_k = 1$ if k^{th} coin returns a head else 0

• {H, H, T, H, ...}
$$\rightarrow (\frac{1}{2^1} + \frac{1}{2^2} + \frac{0}{2^3} + \frac{1}{2^4} + \cdots) = (0.1101 \cdots)_2$$

Formalization of Standard Uniform Random Variable

Continuous Uniform random variable in the interval [0,1]
 Sampling Algorithm using a sequence of Coin Flips (C_k)

$$U = \sum_{k=1}^{\infty} (\frac{C_k}{2^k})$$
, where $C_k = 1$ if k^{th} coin returns a head else 0

■ {H, H, T, H, …} → $(\frac{1}{2^1} + \frac{1}{2^2} + \frac{0}{2^3} + \frac{1}{2^4} + \cdots) = (0.1101\cdots)_2$

Standard Uniform random variable in HOL

Step 1. Discrete Standard Uniform random variable

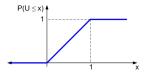
$$U_n = \sum_{k=1}^n (\frac{B_k}{2^k})$$
, where $B_k = 1$ if k^{th} random bit is a True else 0

Step 2. As n tends to infinity: $U = \lim_{n \to \infty} U_n$

Verification of Standard Uniform Random Variable

Theorem: CDF of Standard Uniform Random Variable

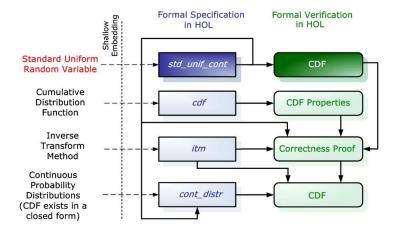
$$\vdash \forall \mathbf{x}. \ \mathbb{P}(\mathbb{U} \leq \mathbf{x}) = \begin{cases} 0 & \text{if } x < 0; \\ x & \text{if } 0 \leq x < 1; \\ 1 & \text{if } 1 \leq x. \end{cases}$$



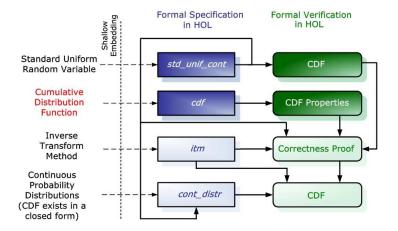
Proof Sketch

- Verify CDF for the discrete Standard Uniform random variable
- Take the limit as n approaches infinity

Methodology



Methodology



Formalization and Verification of CDF

• Modeled as a higher-order-logic function $F_X(a)$

- Accepts: Random Variable X, A Real Number a
- **Returns:** Probability $P(X \le a)$

Formalization and Verification of CDF

• Modeled as a higher-order-logic function $F_X(a)$

Accepts: Random Variable X, A Real Number a

Returns: Probability $P(X \le a)$

Theorem: CDF Properties

Bounds	$\vdash orall a, X. \ 0 \leq F_X(a) \leq 1$
Monotonic	$\vdash orall a, b, X. \ (a < b) \Rightarrow F_X(a) \leq F_X(b)$
Interval Probability	$\vdash \forall a, b, X. \ (a < b) \Rightarrow$
	$P(a < X \le b) = F_X(b) - F_X(a)$
Positive Infinity	$\vdash \forall x. \lim_{n \to \infty} F_x(n) = 1$
Negative Infinity	$\vdash \forall x. \lim_{n \to -\infty} F_x(n) = 0$
Right Continuous	$\vdash \forall a, X. \lim_{n \to a^+} F_X(n) = F_X(a)$
Limit from the Left	$\vdash orall a, X. \lim_{n \to a^{-}} F_X(n) = P(X < a)$

Formalization and Verification of CDF

• Modeled as a higher-order-logic function $F_X(a)$

Accepts: Random Variable X, A Real Number a

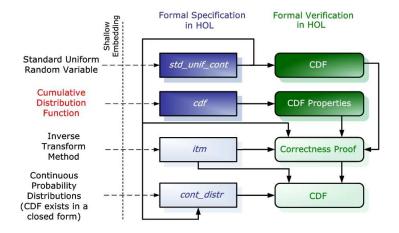
Returns: Probability $P(X \le a)$

Theorem: CDF Properties

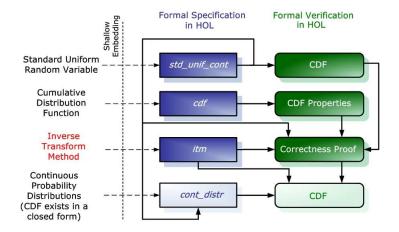
Bounds	$\vdash orall a, X. \ 0 \leq F_X(a) \leq 1$
Monotonic	$\vdash orall a, b, X. \ (a < b) \Rightarrow F_X(a) \leq F_X(b)$
Interval Probability	$\vdash \forall a, b, X. \ (a < b) \Rightarrow$
	$\mathtt{P}(\mathtt{a} < \mathtt{X} \leq \mathtt{b}) = \mathtt{F}_{\mathtt{X}}(\mathtt{b}) - \mathtt{F}_{\mathtt{X}}(\mathtt{a})$
Positive Infinity	$\vdash \forall x. \lim_{n \to \infty} F_x(n) = 1$
Negative Infinity	$\vdash \forall x. \lim_{n \to -\infty} F_x(n) = 0$
Right Continuous	$\vdash \forall a, X. \lim_{n \to a^+} F_X(n) = F_X(a)$
Limit from the Left	$\vdash \forall a, X. \lim_{n \to a^{-}} F_X(n) = P(X < a)$

Verification of Probabilistic Properties in HOL, IFM 07

Methodology



Methodology



Inverse Transform Method

• A random variable, X, with well-defined CDF F $X = F^{-1}(U)$

- U =Standard Uniform random variable
- F^{-1} = Inverse function of F

Inverse Transform Method

A random variable, X, with well-defined CDF F

$$X = F^{-1}(U)$$

■ U = Standard Uniform random variable

• F^{-1} = Inverse function of F

Predicate	Input	Data type	True
is_cdf	g	(real ightarrow real)	If g is a valid CDF
inv_fn	f, g	(real ightarrow real)	If f is the inverse function of g

Inverse Transform Method

A random variable, *X*, with well-defined CDF *F*

$$X = F^{-1}(U)$$

■ U = Standard Uniform random variable

• F^{-1} = Inverse function of F

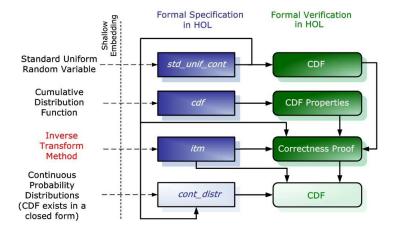
Predicate	Input	Data type	True
is_cdf	g	(real ightarrow real)	If g is a valid CDF
inv_fn	f, g	(real ightarrow real)	If f is the inverse function of g

Theorem: Inverse Transform Method

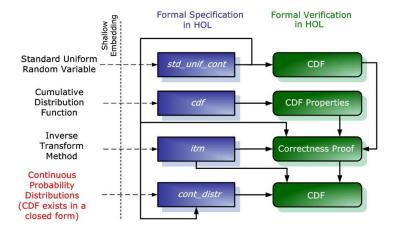
 $\vdash \forall \texttt{f},\texttt{g},\texttt{x}.\;(\texttt{is_cdf}\;\texttt{g})\;\wedge\;(\texttt{inv_fn}\;\texttt{f}\;\texttt{g})\;\Rightarrow\;(\texttt{F}_{\texttt{f}(\texttt{U})}(\texttt{x})=\texttt{g}(\texttt{x}))$

Proof utilizes CDF of the Standard Uniform random variable and CDF properties

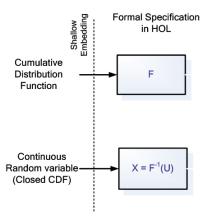
Methodology



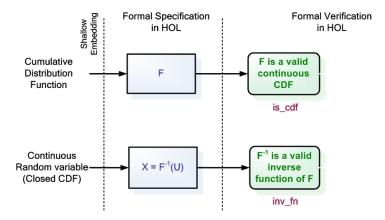
Methodology



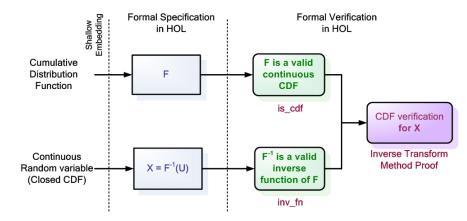
Continuous Random Variables



Continuous Random Variables



Continuous Random Variables



Theorem: Continuous Random Variables				
Distribution	CDF	Random Variable		
Exponential(1)		$(\lambda x \frac{1}{1}ln(1-x))U$		
Uniform(a,b)	$\begin{array}{ll} 0 & x \leq a \\ \frac{x-a}{b-a} & a < x \leq b \\ 1 & b < x \end{array}$	$(\lambda x.(b-a)x+a)U$		
Rayleigh(1)	$ \begin{array}{ccc} 0 & x \le 0 \\ 1 - e^{\frac{-x^2}{2l^2}} & 0 < x \end{array} $	$(\lambda x.l\sqrt{-2ln(1-x)})U$		
Triangular(a)	$\begin{array}{ccc} 0 & \mathbf{x} \leq 0 \\ \frac{2}{a}(\mathbf{x} - \frac{\mathbf{x}^2}{2a}) & \mathbf{x} < \mathbf{a} \\ 1 & \mathbf{a} \leq \mathbf{x} \end{array}$	$(\lambda x.a(1-\sqrt{1-x}))U$		

Applications: Continuous Random Variables

Applications: Continuous Random Variables

- Sources of Error in Computer Arithmetic
 - Uniform random variable
- Inter-Arrival and Service times in Telecommunication Networks
 - Exponential random variable
- Noise signal in Telecommunication Receivers
 - Rayleigh random variable
- Randomized Algorithms
- Security Protocols
- Machine Learning
- and many many more · · ·

Conclusions

Conclusions

Summary

- Formalization framework for Continuous random variables in HOL
- Simple to use approach
- Precise Probabilistic Analysis

Conclusions

Summary

- Formalization framework for Continuous random variables in HOL
- Simple to use approach
- Precise Probabilistic Analysis

Future Work

- Verification of Statistical properties (Mean, Variance)
- Multiple random variables
- Case studies: Suggestions are welcome

More details and HOL sources

HVG Concordia: http://hvg.ece.concordia.ca

Contact: o_hasan@ece.concordia.ca