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Random Variables

m Functions that map random events to numbers

m Discrete random variables

m Attain a countable number of values from an interval of real
numbers
m Example: Dice

m Interval: [1,6]
B Possible Outcomes: {1, 2, 3, 4, 5, 6}

m Continuous random variables

m Attain all values from an interval of real numbers
m Example: Arithmetic Roundoff Error [-0.5, 0.5]

| Interval [-0.5, 0.5]
B Possible Outcomes: Infinite or Uncountable
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Probabilistic Properties

m Most probabilistic properties associated with a random
variable can be expressed in terms of its Cumulative
Distribution Function (CDF)

m Accepts a real number x
m Returns the probability that the random variable is less than
or equal to x
CDF(R) = P(R < x)

m CDF can be used to characterize both Discrete and
Continuous random variables

CDF(dice) CDF(roundoff error)
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m Model: Using approximate random variable functions
m Verification: Analyzing a large number of samples
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Simulation

m Model: Using approximate random variable functions
m Verification: Analyzing a large number of samples

m User friendliness
m Can handle analytically complex random systems
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m Model: Using approximate random variable functions
m Verification: Analyzing a large number of samples

m User friendliness
m Can handle analytically complex random systems

WWEELGQEREES

m Inaccurate results
m Enormous CPU time requirements
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Probabilistic Model Checking

m Model: Probabilistic state machine
m Verification: Exhaustive

m Precise answers

m Verification is automatic

Weaknesses

m State space explosion problem

m Can be addressed through simulation-based methods at
the cost of accuracy

m Limited to systems that are memoryless (Markov Chains)
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Probabilistic Verification and Theorem Proving
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Probabilistic Verification and Theorem Proving

m Model: Using Higher-Order-Logic functions for random
variables

m Verification: Theorem Proving

m Precise answers
m High Expressiveness

Weaknesses

m Significant user interaction
m Immature: A huge amount of formalization is required
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Related Work

m o-fields and Probability [Nedzusiak, 1989]
m The o-Additive Measure Theory [Bialas, 1990]

m Theorem proving with the Real Numbers [Harrison, 1996]

m Formal verification of Probabilistic Algorithms in HOL
[Hurd, 2002]
m Deterministic functions with access to a random Boolean
Sequence
m Formalization of Discrete Random Variables

m Proofs of Randomized Algorithms in Coq [Audebaud et. al,
2006]
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m Formal verification of Probabilistic Algorithms in HOL
[Hurd, 2002]
m Deterministic functions with access to a random Boolean
Sequence
m Formalization of Discrete Random Variables

m Proofs of Randomized Algorithms in Coq [Audebaud et. al,
2006]

There is no machine-checked formalization of Continuous
random variables
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Formalization of Continuous Random Variables

m Framework for the formalization of Continuous random
variables for which CDF exists in a closed mathematical
form

m Minimize the formalization and verification effort

m Reasoning based on Measure and Probability theories is
not required
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Formalization of Continuous Random Variables

m Framework for the formalization of Continuous random
variables for which CDF exists in a closed mathematical
form

m Minimize the formalization and verification effort
m Reasoning based on Measure and Probability theories is
not required

m The HOL Theorem Prover
m Higher-Order-Logic interactive Theorem Prover
m Hurd's framework for the verification of probabilistic
algorithms
m Comprehensive library of theorems including Harrison’s
theories on real analysis
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Formalization of Continuous Random Variables

m Sampling algorithms are nonterminating
m Tedious formalization and verification
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Formalization of Continuous Random Variables

m Sampling algorithms are nonterminating
m Tedious formalization and verification

m Inverse Transform Method

m Extensively used method in Non-uniform random number
generation

!andard .nverse Mm Numbers

Uniform Random ; Transform From Continuous
Number Generator Method

Distributions
(Closed CDF)

m Standard Uniform random number generator generates
uniformly distributed random real numbers in the interval
[0.1]
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Formalization of Standard Uniform Random Variable

m Continuous Uniform random variable in the interval [0,1]
m Sampling Algorithm using a sequence of Coin Flips (C)
U= (g), where Cy = 1if k™ coin returns a head else 0

m{HHTH -} = (A +42+3+4+-)=(01101---),
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Formalization of Standard Uniform Random Variable

m Continuous Uniform random variable in the interval [0,1]
m Sampling Algorithm using a sequence of Coin Flips (C)

U= (g‘—k), where Cy = 1if k™ coin returns a head else 0
k=1

m{HHTH -} = (A +42+3+4+-)=(01101---),

m Standard Uniform random variable in HOL
m Step 1. Discrete Standard Uniform random variable

n
B . .
U, = Z(Z—t), where By = 1if k' random bit is a True else 0
k=1

m Step 2. As n tends to infinity: U= nIim U,
— 00
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Verification of Standard Uniform Random Variable

Theorem: CDF of Standard Uniform Random Variable

0 ifx <O;
Fvx.PU<x)=<¢ x ifO<x<1;
1 ifl<x.

m Proof Sketch

m Verify CDF for the discrete Standard Uniform random
variable
m Take the limit as n approaches infinity
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Methodology
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Formalization and Verification of CDF

m Modeled as a higher-order-logic function Fx (a)
m Accepts: Random Variable X, A Real Number a
m Returns: Probability P(X < a)
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Formalization and Verification of CDF

m Modeled as a higher-order-logic function Fx (a)
m Accepts: Random Variable X, A Real Number a
m Returns: Probability P(X < a)

Bounds

Theorem: CDF Properties

Fva, X. 0 < Fx(a)

Monotonic

<1
FVa,b, X (a < b)= Fx(a) < Fx(b)

Interval Probability
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Positive Infinity
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m Verification of Probabilistic Properties in HOL, IFM 07
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Inverse Transform Method

m A random variable, X, with well-defined CDF F
X = F—l(U)

m U = Standard Uniform random variable
m F—1 = Inverse function of F
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Inverse Transform Method

m A random variable, X, with well-defined CDF F
X = F—l(U)

m U = Standard Uniform random variable
m F—1 = Inverse function of F

| Predicate | Input | Datatype | True \
is_cdf g (real — real) | If g is a valid CDF
inv_fn f,g | (real — real) | If f is the inverse function of g

Theorem: Inverse Transform Method
Fvf,g,x.(is _cdfg ) A (inv _fnfg ) = (F¢ (U)(x) =g(x))

m Proof utilizes CDF of the Standard Uniform random
variable and CDF properties
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Continuous Random Variables
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Continuous Random Variables

z 2, Formal Specification Formal Verification
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Continuous Random Variables

Continuous
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Continuous Random Variables

Theorem: Continuous Random Variables

Distribution CDF Random Variable

Exponential(l ) 0 | x<0 (Ax. — tIn (1 —x))U
1-e™ 0<x
0 X <a

Uniform(a, b) p=2 a<x<b (Ax.(b —a)x +a)u
1 b <x
0 x <0

Rayleigh(l ) x2 (M.l y/—2In (1 —x))U
l-e2z2 0<x
0 x<0

Triangular(a) 2(x — 2a) x<a | (Ax.a(l-y1I-x)U
1 a<x
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Applications: Continuous Random Variables
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Applications: Continuous Random Variables

m Sources of Error in Computer Arithmetic
m Uniform random variable

m Inter-Arrival and Service times in Telecommunication
Networks

m Exponential random variable

Noise signal in Telecommunication Receivers
m Rayleigh random variable

Randomized Algorithms
Security Protocols
Machine Learning

and many many more - - -
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Conclusions

® Summary

m Formalization framework for Continuous random variables
in HOL

m Simple to use approach

m Precise Probabilistic Analysis

m Future Work

m Verification of Statistical properties (Mean, Variance)
m Multiple random variables
m Case studies: Suggestions are welcome

23/24



Thank You

More details and HOL sources

HVG Concordia: http://hvg.ece.concordia.ca

Contact: o_hasan@ece.concordia.ca
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