Formalization of Laplace Transform using the Multivariable Calculus Theory of HOL-Light

Hira Taqdees and Osman Hasan

System Analysis & Verification (SAVe) Lab,
National University of Sciences and Technology (NUST),
Islamabad, Pakistan

LPAR-19

Stellenbosch, South Africa December 15, 2013

Outline

Introduction

Motivation

■ Formalization Details

- ☐ Case Study
 - □ Linear Transfer Converter (LTC) circuit
- Conclusions

Laplace Transform

- ☐ Integral transform method
 - □ Pierre Simon Laplace 1749-1827
- Mathematically represented by the following improper integral

$$F(s) = \int_0^\infty f(t)e^{-st}dt, \ s \in \mathbb{C}$$

- A linear operator
 - □ Input: Time varying function, i.e., a function f(t) with a real argument t ($t \ge 0$)
 - \square Output: F(s) with complex argument s

Laplace Transform - Key Benefits and Utilizations

- □ Solve linear Ordinary Differential Equations (ODEs) using simple algebraic techniques
- Obtain concise and useful input/output relationships (Transfer Functions) for systems
 - ☐ Widely used in Control System and Analog Circuit Design

Laplace Transform - Example

$$\frac{d^2y(t)}{dt^2} + 4y(t) = x(t)$$

$$\mathcal{L}\Big(\frac{d^2y}{dt^2} + 4y(t)\Big)s = \mathcal{L}x(t)s$$
 Taking Laplace Transform on Both sides

$$s^{2}(\mathcal{L}y(t)s) + 4(\mathcal{L}y(t)s) = (\mathcal{L}x(t)s)$$

Using the Laplace of a differential and the Linearity of Laplace Properties

$$\frac{(\mathcal{L}y(t)s)}{(\mathcal{L}x(t)s)} = \frac{1}{s^2 + 4}$$

Transfer Function

let
$$x(t) = sin(2t)$$
, then $\mathcal{L}x(t)(s) = \frac{2}{s^2 + 4}$ Laplace of sine

$$\mathcal{L}y(t)s = \frac{2}{(s^2+4)^2} \xrightarrow{\text{Inverse Laplace}} \quad y(t) = \frac{1}{8}sin(2t) - \frac{t}{4}cos(2t)$$

Solution in time domain

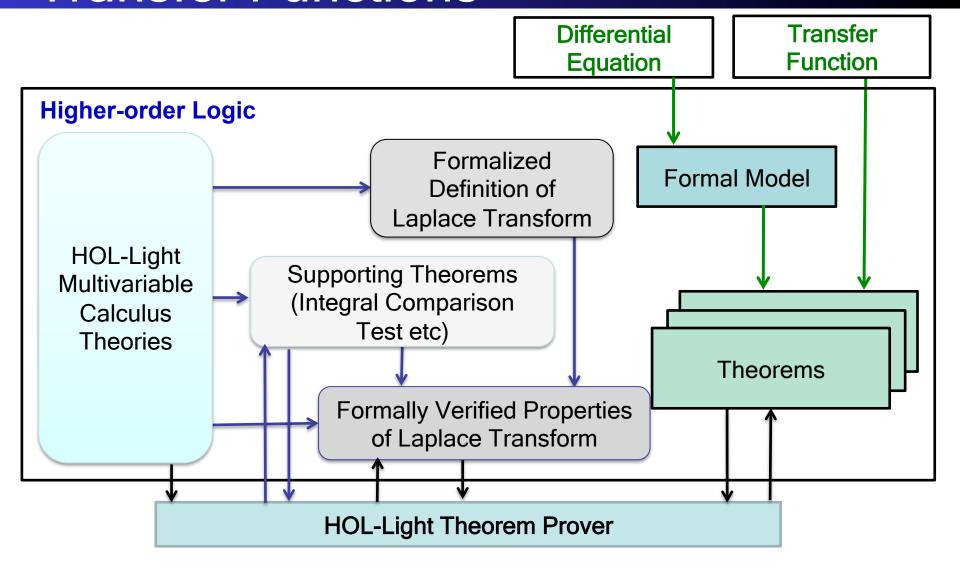
Real-World Applications for Laplace Transforms

- ☐ Integral part of analyzing many physical systems
 - □ Aerodynamic systems
 - □ Circuit Analysis
 - □ Control systems
 - Mechanical networks
 - ☐ Analogue filters

Laplace Transform based Analysis

Criteria	Paper- and- Pencil Proof	Simulation/ Symbolic Methods	Automated Formal Methods (MC, ATP)	Computer Algebra Systems	Higher-order- logic Proof Assistants
Expressiveness	V		X		
Accuracy	☑ ?	*		*	
Automation	*		$\overline{\mathbf{V}}$		Nile Will

Proposed Approach for Verifying Transfer Functions



Formal Definition of Laplace Transform

Mathematical definition

$$F(s) = \int_0^\infty f(t)e^{-st}dt, \ s \in \mathbb{C} \implies F(s) = \lim_{b \to \infty} \int_0^b f(t)e^{-st}dt$$

Given f is piecewise smooth and is of exponential order i.e. there exist constants $\alpha \in \mathbb{R}$ and 0 < M such that $|f(t)| \leq Me^{\alpha t}$ for all $t \geq 0$

Definition: Laplace Transform

Definition: Conditions for Laplace Existence

Formalized Laplace Transform Properties

Property	Ma	thematical Form
Limit Existence	$\exists l.$	$\int_0^\infty f(t)e^{-st}dt = l$
Linearity	\mathcal{L} ($(\alpha f(t) + \beta g(t))s = \alpha(\mathcal{L}f(t)s) + \beta(\mathcal{L}g(t)s)$
Frequency Shifting	L ($\left(e^{bt}f(t)\right)s = \mathcal{L}\left[f(t)(s-b)\right]$

Property	Formalized Form
Limit Existence	$\vdash \forall \text{ f s. laplace_exists f s} \Rightarrow \\ (\exists \text{l. } ((\lambda \text{b. integral (interval [lift (\&0),lift b])} \\ (\lambda \text{t. cexp } (\neg(\text{s * Cx (drop t)})) * \text{f t)}) \to \text{l) at_posinfinity})$
Linearity	$\vdash \forall \text{ f g s a b. laplace_exists f s } \land \text{ laplace_exists g s} \Rightarrow \text{ laplace } (\lambda x. \text{ a * f x + b * g x}) \text{ s = a * laplace f s + b * laplace g s}$
Frequency Shifting	\vdash ∀ f s b. laplace_exists f s \Rightarrow laplace (λ t. cexp (b * Cx (drop t)) * f t) s = laplace f (s - b)

Formalized Laplace Transform Properties

Property	Mathematical Form	
Integration	$\mathcal{L}(\int_0^t f(\tau)d\tau)s = \frac{1}{s}(\mathcal{L}f(t)s)$	
n-order Differentiation	$\mathcal{L}\left(\frac{d^n f(t)}{dx^n}\right)s = s^n (\mathcal{L}f(t)s) - \sum_{k=1}^n s^{k-1} \frac{d^{n-k} f(0)}{dx^{n-k}}$	

Property	Formalized Form		
Integration	\vdash \forall f s. (&0 $<$ Re s) \land laplace_exists f s \land		
	laplace_exists (λ x. integral (interval [lift (&0),x]) f) s \wedge		
	$(\forall \mathtt{x}. \ \mathtt{f} \ \mathtt{continuous_on} \ \mathtt{interval} \ [\mathtt{lift} \ (\&0),\mathtt{x}]) \Rightarrow$		
	laplace (λ x. integral (interval [lift (&0),x]) f) s =		
	inv(s) * laplace f s		
Higher Order	$dash$ f s n. laplace_exists_higher_derivative n f s \wedge		
Differentiation	($orall \mathtt{x}$. higher_derivative_differentiable n f x) \Rightarrow		
	laplace (λ x. higher_order_derivative n f x) s =		
	s pow n * laplace f s - vsum (1n) (λ x. s pow (x-1) *		
	higher_order_derivative (n-x) f (lift (&0)))		

5000 lines of HOL-Light code and approximately 800 man-hours

Case Study: Linear Transfer Converter (LTC) circuit

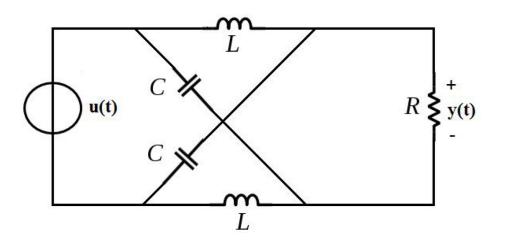
- □ Converts the voltage and current levels in power electronics systems
- ☐ Functional correctness of power systems depends on design and stability of LTC

Differential Equation:

$$\frac{d^{2}y}{dt^{2}} - \frac{2}{RC}\frac{dy}{dt} + \frac{1}{LC}y = \frac{d^{2}u}{dt^{2}} - \frac{1}{LC}u$$

Transfer Function:

$$\frac{Y(s)}{U(s)} = \frac{s^2 - \frac{1}{LC}}{s^2 - \frac{2s}{RC} + \frac{1}{LC}}$$



Linear Transfer Converter (LTC) circuit

Differential Equation:
$$\frac{d^2y}{dt^2} - \frac{2}{RC}\frac{dy}{dt} + \frac{1}{LC}y = \frac{d^2u}{dt^2} - \frac{1}{LC}u$$

Definition: Differential Equation of LTC

```
\vdash \forall y u x L C R. diff_eq_LTC y u x L C R \Leftrightarrow
diff_eq 2 [Cx (&1 / L * C); --Cx (&2 / R * C); Cx (&1)] y x =
diff_eq 2 [ --Cx (&1 / L * C ); Cx (&0); Cx (&1)] u x
```

Definition: Differential Equation

```
\vdash \forall n L f x. diff_eq n L f x \Leftrightarrow
  vsum (0..n) (\lambdat. EL t L x * higher_order_derivative t f x)
```

Linear Transfer Converter (LTC)

Theorem: Transfer Function of LTC \(\forall \text{ y u s R L C. (&0 < R) \times (&0 < L) \times (&0 < C) \times (\text{ zero_initial_conditions 1 u) \times (\text{ zero_initial_conditions 1 y) \times (\text{ \text{ x. higher_derivative_differentiable 2 u x) \times (\text{ \text{ kigher_derivative_laplace_exists 2 u s) \times (\text{ higher_derivative_laplace_exists 2 u s) \times (\text{ \text{ case } (Cx(&1/(L*C)) - Cx(&2/(R*C))*s) + s pow 2 = Cx(&0) \) \(\text{ \text{ case } (\text{ case } u s = Cx(&0)) \times (\text{ \text{ case } (\text{ case } u s = Cx(&0)) \times (\text{ case } u s = Cx(&1/(L*C))) \) \(\text{ case } (Cx(&1/(L*C)) - (Cx(&1/(L*C))) - (Cx(&1/(L*C))) \)

□ 650 lines of HOL-Light code and the proof process took just a couple of hours

Cx(&2/(R*C))*s) + s pow 2))

Conclusions

- □ Formalization of Laplace transform theory using higher-order logic
 - ☐ Multivariable Calculus Theory of HOL-Light
- Advantages
 - □ Accurate Results
 - □ Reduction in user-effort while formally analyzing Physical Systems that involve Differential Equations
- □ Case Study: Transfer function verification of LTC circuit

Future Directions

- □ Application of Laplace transform theory in Analog and Mixed Signal circuits and controls engineering
- ☐ Formalization of Inverse Laplace transform
- ☐ Formalization of Fourier transform

Thanks!

- ☐ For More Information
 - □ Visit our website
 - http://save.seecs.nust.edu.pk
 - □ Contact
 - osman.hasan@seecs.nust.edu.pk

Additional slides

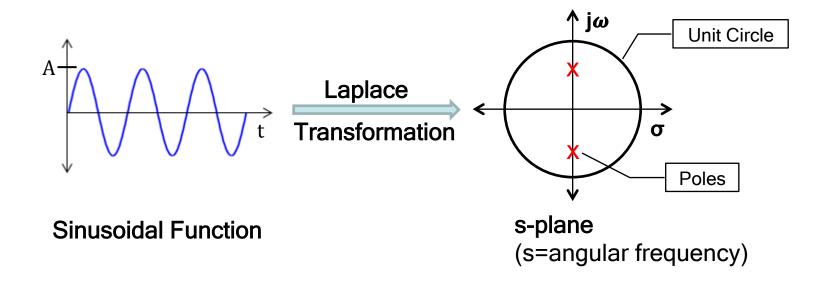
Formalized Laplace Transform

Definition 3: Exponential Order Function

```
\vdash \forall f M a. exp_order f M a \Leftrightarrow &0 < M \land (\forall t. &0 \leq t \Rightarrow norm (f (lift t)) \leq M * exp (drop a * t))
```

Laplace Transform

□ Provides compact representation of the overall behavior of the given time varying function



☐s-plane representation depicts frequency and phase of sinusoidal signal

HOL-Light

- Multivariable calculus theories
 - ☐ Integral theory
 - □ Differential theory
 - ☐ Transcendental theory
 - □Topological theory
 - □ Complex analysis theory
- Real number theory
- Natural number theory

Limit Existence of Laplace Transform

□ Proof Steps

Split the complex integrand into real and imaginary parts

Convert both complex integrals to their corresponding real integral and split the complex limit to both integrals

```
\exists 1. (\ (\lambda b. \ integral \ (interval \ [lift \ (\&0), lift \ b])
(\lambda t. \ Cx \ Re \ (cexp \ (-(s * Cx \ (drop \ t))) * f \ t))) +
ii * integral \ (interval \ [lift \ (\&0), lift \ b])
(\lambda t. \ Cx \ Im \ (cexp \ (-(s * Cx \ (drop \ t))) * f \ t)))) \to 1)
at\_posinfinity
```

```
laplace_exists f s \Rightarrow \existsk. ((\lambdab. real_integral (real_interval [&0,b]) (\lambdax. abs (Re (cexp (-s * Cx (x)) * f(lift x))))) \rightarrow k) at_posinfinity
```

Lemma 3: Comparison Test for Improper Integrals