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Synthesis Verification

Pre-Synthesis Verification
Correctness of the synthesis
program

Very tedious
Impossible for the large
synthesis programs

Post-Synthesis Verification
Output is verified with respect to
the input

No knowledge about
synthesis algorithms
Abstraction differences
complicates the task

Formal Synthesis
Synthesis is performed within a formal environment

Most hardware systems can be handled
Familiarity with formal semantics and reasoning
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Proposed Solution

Automated Formal Synthesis Approach
Formalization and Verification steps are transparent to the
user

Limit the synthesis process to a specific set of
transformations

Formally verified to preserve the correctness of the design
prior to the actual synthesis process

Verification: Higher-Order-Logic Theorem Proving

Higher-Order-Logic

System of deduction with a precise semantics
High Expressiveness

Theorem Provers

Computer based proof tools
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Automated Formal Synthesis of Wallace Tree
Multipliers

FA and HA transformations are correctness preserving
transformations

Synthesis Tool

C++
Accepts the width of operands
Returns the synthesized gate-level netlist and the
correctness lemma

Validation Tool

Isabelle/HOL
Accepts the correctness lemma
Returns True if the synthesis is complete and correct



Introduction Contributions Related Work Conclusions

Automated Formal Synthesis of Wallace Tree
Multipliers

FA and HA transformations are correctness preserving
transformations

Synthesis Tool
C++
Accepts the width of operands
Returns the synthesized gate-level netlist and the
correctness lemma

Validation Tool

Isabelle/HOL
Accepts the correctness lemma
Returns True if the synthesis is complete and correct



Introduction Contributions Related Work Conclusions

Automated Formal Synthesis of Wallace Tree
Multipliers

FA and HA transformations are correctness preserving
transformations

Synthesis Tool
C++
Accepts the width of operands
Returns the synthesized gate-level netlist and the
correctness lemma

Validation Tool
Isabelle/HOL
Accepts the correctness lemma
Returns True if the synthesis is complete and correct



Introduction Contributions Related Work Conclusions

Formalization of Wallace Tree Multipliers
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eval: Computes integer value of a Wallace Tree
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Formalization of Wallace Tree Transformations

apply_trans: Applies a sequence of FA and HA
transformation to a Wallace Tree
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Wallace Tree Multiplier Verification

Theorem: FA transformation is correctness preserving

` ∀w,n. eval(fa_trans_tree w n) = eval w

Theorem: HA transformation is correctness preserving

` ∀w,n. eval(ha_trans_tree w n) = eval w

Theorem: Correctness of Wallace Tree synthesis

` ∀a,b,t. eval(apply_trans(w_tree a b) t) = a10 ∗ b10
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Related Work

Formal Synthesis

A formal approach to specify and synthesize at the system
level. [Blumenröhr, 1999]
Formal synthesis at the algorithmic level. [Blumenröhr et.
al, 1999]

None of the existing approaches offers automated synthesis

Multiplier Verification

On the complexity of VLSI implementations and graph
representations of Boolean functions with applications to
integer multiplication. [Bryant, 1991]
Mechanically Verifying a family of multiplier circuits [Kapur,
1996]
Polynomial formal verification of multipliers. [Keim et. al,
2003]

Formal synthesis has never been used with multipliers before
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Formal synthesis at the algorithmic level. [Blumenröhr et.
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More details and Isabelle/HOL sources
Contact: o_hasan@ece.concordia.ca

Thank You!
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