
Introduction Contributions Related Work Conclusions

Automated Formal Synthesis of Wallace Tree
Multipliers

Osman Hasan Skander Kort

Electrical and Computer Engineering Department
Concordia University, Montreal, Canada

MWSCAS/NEWCAS, 2007



Introduction Contributions Related Work Conclusions

Outline

1 Introduction

2 Contributions

3 Related Work

4 Conclusions



Introduction Contributions Related Work Conclusions

Hardware Synthesis

Stepwise refinement of circuit descriptions from higher
levels of abstraction to lower ones

Automated synthesis tools with sophisticated algorithms

Prone to design bugs

Verification of synthesized results is a necessity

70% of the design time and budget is spent on verification



Introduction Contributions Related Work Conclusions

Hardware Synthesis

Stepwise refinement of circuit descriptions from higher
levels of abstraction to lower ones

Automated synthesis tools with sophisticated algorithms
Prone to design bugs

Verification of synthesized results is a necessity

70% of the design time and budget is spent on verification



Introduction Contributions Related Work Conclusions

Hardware Synthesis

Stepwise refinement of circuit descriptions from higher
levels of abstraction to lower ones

Automated synthesis tools with sophisticated algorithms
Prone to design bugs

Verification of synthesized results is a necessity
70% of the design time and budget is spent on verification



Introduction Contributions Related Work Conclusions

Synthesis Verification

Pre-Synthesis Verification
Correctness of the synthesis
program

Very tedious
Impossible for the large
synthesis programs

Post-Synthesis Verification
Output is verified with respect to
the input

No knowledge about
synthesis algorithms
Abstraction differences
complicates the task

Formal Synthesis
Synthesis is performed within a formal environment

Most hardware systems can be handled
Familiarity with formal semantics and reasoning



Introduction Contributions Related Work Conclusions

Synthesis Verification

Pre-Synthesis Verification
Correctness of the synthesis
program

Very tedious
Impossible for the large
synthesis programs

Post-Synthesis Verification
Output is verified with respect to
the input

No knowledge about
synthesis algorithms
Abstraction differences
complicates the task

Formal Synthesis
Synthesis is performed within a formal environment

Most hardware systems can be handled
Familiarity with formal semantics and reasoning



Introduction Contributions Related Work Conclusions

Synthesis Verification

Pre-Synthesis Verification
Correctness of the synthesis
program

Very tedious
Impossible for the large
synthesis programs

Post-Synthesis Verification
Output is verified with respect to
the input

No knowledge about
synthesis algorithms
Abstraction differences
complicates the task

Formal Synthesis
Synthesis is performed within a formal environment

Most hardware systems can be handled
Familiarity with formal semantics and reasoning



Introduction Contributions Related Work Conclusions

Synthesis Verification

Pre-Synthesis Verification
Correctness of the synthesis
program

Very tedious
Impossible for the large
synthesis programs

Post-Synthesis Verification
Output is verified with respect to
the input

No knowledge about
synthesis algorithms
Abstraction differences
complicates the task

Formal Synthesis
Synthesis is performed within a formal environment

Most hardware systems can be handled
Familiarity with formal semantics and reasoning



Introduction Contributions Related Work Conclusions

Proposed Solution

Automated Formal Synthesis Approach
Formalization and Verification steps are transparent to the
user

Limit the synthesis process to a specific set of
transformations

Formally verified to preserve the correctness of the design
prior to the actual synthesis process

Verification: Higher-Order-Logic Theorem Proving

Higher-Order-Logic

System of deduction with a precise semantics
High Expressiveness

Theorem Provers

Computer based proof tools



Introduction Contributions Related Work Conclusions

Proposed Solution

Automated Formal Synthesis Approach
Formalization and Verification steps are transparent to the
user

Limit the synthesis process to a specific set of
transformations

Formally verified to preserve the correctness of the design
prior to the actual synthesis process

Verification: Higher-Order-Logic Theorem Proving

Higher-Order-Logic

System of deduction with a precise semantics
High Expressiveness

Theorem Provers

Computer based proof tools



Introduction Contributions Related Work Conclusions

Proposed Solution

Automated Formal Synthesis Approach
Formalization and Verification steps are transparent to the
user

Limit the synthesis process to a specific set of
transformations

Formally verified to preserve the correctness of the design
prior to the actual synthesis process

Verification: Higher-Order-Logic Theorem Proving
Higher-Order-Logic

System of deduction with a precise semantics
High Expressiveness

Theorem Provers
Computer based proof tools



Introduction Contributions Related Work Conclusions

Methodology



Introduction Contributions Related Work Conclusions

Wallace Tree Multipliers

Fast multiplication of wide operands
Using Full Adder (FA) and Half Adder (HA) cells



Introduction Contributions Related Work Conclusions

Wallace Tree Multipliers

Fast multiplication of wide operands
Using Full Adder (FA) and Half Adder (HA) cells



Introduction Contributions Related Work Conclusions

Wallace Tree Multipliers

Fast multiplication of wide operands
Using Full Adder (FA) and Half Adder (HA) cells



Introduction Contributions Related Work Conclusions

Automated Formal Synthesis of Wallace Tree
Multipliers

FA and HA transformations are correctness preserving
transformations

Synthesis Tool

C++
Accepts the width of operands
Returns the synthesized gate-level netlist and the
correctness lemma

Validation Tool

Isabelle/HOL
Accepts the correctness lemma
Returns True if the synthesis is complete and correct



Introduction Contributions Related Work Conclusions

Automated Formal Synthesis of Wallace Tree
Multipliers

FA and HA transformations are correctness preserving
transformations

Synthesis Tool
C++
Accepts the width of operands
Returns the synthesized gate-level netlist and the
correctness lemma

Validation Tool

Isabelle/HOL
Accepts the correctness lemma
Returns True if the synthesis is complete and correct



Introduction Contributions Related Work Conclusions

Automated Formal Synthesis of Wallace Tree
Multipliers

FA and HA transformations are correctness preserving
transformations

Synthesis Tool
C++
Accepts the width of operands
Returns the synthesized gate-level netlist and the
correctness lemma

Validation Tool
Isabelle/HOL
Accepts the correctness lemma
Returns True if the synthesis is complete and correct



Introduction Contributions Related Work Conclusions

Formalization of Wallace Tree Multipliers

w_tree: Generates a Wallace Tree

eval: Computes integer value of a Wallace Tree



Introduction Contributions Related Work Conclusions

Formalization of Wallace Tree Multipliers

w_tree: Generates a Wallace Tree

eval: Computes integer value of a Wallace Tree



Introduction Contributions Related Work Conclusions

Formalization of Wallace Tree Multipliers

w_tree: Generates a Wallace Tree

eval: Computes integer value of a Wallace Tree



Introduction Contributions Related Work Conclusions

Formalization of Wallace Tree Transformations

fa_trans_tree: FA transformation on a Wallace Tree

Similar functions for the HA Transformation



Introduction Contributions Related Work Conclusions

Formalization of Wallace Tree Transformations

fa_trans_tree: FA transformation on a Wallace Tree

Similar functions for the HA Transformation



Introduction Contributions Related Work Conclusions

Formalization of Wallace Tree Transformations

apply_trans: Applies a sequence of FA and HA
transformation to a Wallace Tree



Introduction Contributions Related Work Conclusions

Wallace Tree Multiplier Verification

Theorem: FA transformation is correctness preserving

` ∀w,n. eval(fa_trans_tree w n) = eval w

Theorem: HA transformation is correctness preserving

` ∀w,n. eval(ha_trans_tree w n) = eval w

Theorem: Correctness of Wallace Tree synthesis

` ∀a,b,t. eval(apply_trans(w_tree a b) t) = a10 ∗ b10



Introduction Contributions Related Work Conclusions

Wallace Tree Multiplier Verification

Theorem: FA transformation is correctness preserving

` ∀w,n. eval(fa_trans_tree w n) = eval w

Theorem: HA transformation is correctness preserving

` ∀w,n. eval(ha_trans_tree w n) = eval w

Theorem: Correctness of Wallace Tree synthesis

` ∀a,b,t. eval(apply_trans(w_tree a b) t) = a10 ∗ b10



Introduction Contributions Related Work Conclusions

Synthesis of a MxN Multiplier



Introduction Contributions Related Work Conclusions

Synthesis of a MxN Multiplier



Introduction Contributions Related Work Conclusions

Synthesis of a MxN Multiplier



Introduction Contributions Related Work Conclusions

Synthesis of a MxN Multiplier



Introduction Contributions Related Work Conclusions

Synthesis of a MxN Multiplier



Introduction Contributions Related Work Conclusions

Related Work

Formal Synthesis

A formal approach to specify and synthesize at the system
level. [Blumenröhr, 1999]
Formal synthesis at the algorithmic level. [Blumenröhr et.
al, 1999]

None of the existing approaches offers automated synthesis

Multiplier Verification

On the complexity of VLSI implementations and graph
representations of Boolean functions with applications to
integer multiplication. [Bryant, 1991]
Mechanically Verifying a family of multiplier circuits [Kapur,
1996]
Polynomial formal verification of multipliers. [Keim et. al,
2003]

Formal synthesis has never been used with multipliers before



Introduction Contributions Related Work Conclusions

Related Work

Formal Synthesis
A formal approach to specify and synthesize at the system
level. [Blumenröhr, 1999]
Formal synthesis at the algorithmic level. [Blumenröhr et.
al, 1999]

None of the existing approaches offers automated synthesis

Multiplier Verification

On the complexity of VLSI implementations and graph
representations of Boolean functions with applications to
integer multiplication. [Bryant, 1991]
Mechanically Verifying a family of multiplier circuits [Kapur,
1996]
Polynomial formal verification of multipliers. [Keim et. al,
2003]

Formal synthesis has never been used with multipliers before



Introduction Contributions Related Work Conclusions

Related Work

Formal Synthesis
A formal approach to specify and synthesize at the system
level. [Blumenröhr, 1999]
Formal synthesis at the algorithmic level. [Blumenröhr et.
al, 1999]

None of the existing approaches offers automated synthesis

Multiplier Verification
On the complexity of VLSI implementations and graph
representations of Boolean functions with applications to
integer multiplication. [Bryant, 1991]
Mechanically Verifying a family of multiplier circuits [Kapur,
1996]
Polynomial formal verification of multipliers. [Keim et. al,
2003]

Formal synthesis has never been used with multipliers before



Introduction Contributions Related Work Conclusions

Related Work

Formal Synthesis
A formal approach to specify and synthesize at the system
level. [Blumenröhr, 1999]
Formal synthesis at the algorithmic level. [Blumenröhr et.
al, 1999]

None of the existing approaches offers automated synthesis

Multiplier Verification
On the complexity of VLSI implementations and graph
representations of Boolean functions with applications to
integer multiplication. [Bryant, 1991]
Mechanically Verifying a family of multiplier circuits [Kapur,
1996]
Polynomial formal verification of multipliers. [Keim et. al,
2003]

Formal synthesis has never been used with multipliers before



Introduction Contributions Related Work Conclusions

Related Work

Formal Synthesis
A formal approach to specify and synthesize at the system
level. [Blumenröhr, 1999]
Formal synthesis at the algorithmic level. [Blumenröhr et.
al, 1999]

None of the existing approaches offers automated synthesis

Multiplier Verification
On the complexity of VLSI implementations and graph
representations of Boolean functions with applications to
integer multiplication. [Bryant, 1991]
Mechanically Verifying a family of multiplier circuits [Kapur,
1996]
Polynomial formal verification of multipliers. [Keim et. al,
2003]

Formal synthesis has never been used with multipliers before



Introduction Contributions Related Work Conclusions

Conclusions

Automated Formal Synthesis Methodology

User friendly
Formally verified synthesized results
Speeds up the design process

Formal Synthesis of Wallace Tree Multipliers

Capability to handle synthesis of wide multipliers

Future Work

Application to other digital circuits



Introduction Contributions Related Work Conclusions

Conclusions

Automated Formal Synthesis Methodology
User friendly
Formally verified synthesized results
Speeds up the design process

Formal Synthesis of Wallace Tree Multipliers

Capability to handle synthesis of wide multipliers

Future Work

Application to other digital circuits



Introduction Contributions Related Work Conclusions

Conclusions

Automated Formal Synthesis Methodology
User friendly
Formally verified synthesized results
Speeds up the design process

Formal Synthesis of Wallace Tree Multipliers
Capability to handle synthesis of wide multipliers

Future Work

Application to other digital circuits



Introduction Contributions Related Work Conclusions

Conclusions

Automated Formal Synthesis Methodology
User friendly
Formally verified synthesized results
Speeds up the design process

Formal Synthesis of Wallace Tree Multipliers
Capability to handle synthesis of wide multipliers

Future Work
Application to other digital circuits



Introduction Contributions Related Work Conclusions

More details and Isabelle/HOL sources
Contact: o_hasan@ece.concordia.ca

Thank You!


	Introduction
	Contributions
	Related Work
	Conclusions

