
1

Arithmetic Calculus Modeling for Approximate
Circuits

Alain Aoun1, Mahmoud Masadeh1,2, Osman Hasan3 and Sofiène Tahar1

a alain@ece.concordia.ca, mahmoud.s@yu.edu.jo, osman.hasan@seecs.edu.pk, tahar@ece.concordia.ca
1Department of Electrical and Computer Engineering, Concordia University, Montreal, Quebec, Canada

2Computer Engineering Department, Yarmouk University, Irbid, Jordan
3Department of Electrical Engineering, National University of Sciences & Technology, Islamabad, Pakistan

Abstract—Approximate computing (AC) is a paradigm that
introduces errors for reduced design metrics. AC has been
recommended for implementation in error-resilient applications.
Previously proposed AC implementations can be modified to
generate new configurations and thus result in a large design
space of AC. In this paper, we propose a mathematical modeling
technique that allows a fast analysis of hardware designs with the
aim of studying the quality of large design spaces. Mathematically
modeling the AC circuits facilitates the quality to be assessed
using various error metrics while reducing the assessment time.
The proposed approach has been applied to various arithmetic
units, including an array multiplier, a multiply accumulate
unit and a divider. The experimental results showed a quality
assessment equivalent to the one obtained by the Monte-Carlo
simulation, while offering a remarkable reduction in CPU time.

Keywords-Approximate Computing, Approximate Arithmetic,
Mathematical Modeling, Sobel Filter, Digital Circuits

I. INTRODUCTION

According to a study published in 2012 by the International
Data Corporation (IDC), the world generated 2.8 zettabyte in
2012 and projected the world to generate 40 zettabyte by the
year 2020 [1]. However, according to a recent study published
by the IDC in 2021, the world generated 64.2 zettabytes in
2020 [2] and hence 50% more than what have been previously
anticipated. Furthermore, the IDC projects that just the Internet
of Thing (IoT) devices will generate 80 zettabyte by 2025 [3]
which exceeds the data generated by all users and devices
in the year 2020. On the other hand, the semiconductor
manufacturers are unable to cope with the current demand.
For instance Taiwan Semiconductor Manufacturing Company
(TSMC) have seen an annual growth of 2 to 6% in recent
years [4]. As hardware manufacturing is unable to meet the
demand, actions are becoming necessary. One approach is the
resource optimization for a given task.

Approximate computing (AC) or inexact computing
emerged as a computing paradigm to optimize hardware usage.
AC subsides output quality for saving on resources such as
area, delay and power. Thus, AC has been predominantly rec-
ommended for implementation in error-resilient applications
such as big data, image processing and machine learning [5].
An application is considered error-tolerant when its nature
incorporates some of the following factors [6]: (i) noisy
input signal, e.g., digital signals from various analog sensors;
(ii) absence of golden result, e.g., search engines; (iii) im-
perfect sense of humans, e.g., dropped frame in a video call;
and (iv) implementing algorithms with self-healing and error

attenuation patterns. AC can be implemented at both hardware
and software levels of computing systems. For instance, the
work in [7] investigated an implementation of AC in software
using a loop perforation technique to skip some portions of
the code while having a minimal impact on the output quality.
On the other hand, approximate hardware implementations
mainly focus on modifying the structure of the circuit in order
to deliver an approximate behavior. For instance, the work
in [8] investigated implementations of approximate mirror full
adders (FAs). The authors of [8] generated 5 versions of
approximate FA in a manual iterative fashion which consists
of removing a pair of transistors every time. This resulted in
a FA that consists of only two buffers in the last iteration.

Since AC is a viable solution for many applications, design
space exploration (DSE) is a necessity in order to uncover the
best implementation. DSE of AC can be performed either man-
ually, such as the work in [8], or using automated tools such
as “Approximate Units Generator (AUGER)” [9]. To the best
of our knowledge, most of the DSE methods rely on Monte-
Carlo simulation which is time consuming. Subsequently, we
propose the analysis of AC hardware using mathematical
modeling that allows the evaluation of the hardware using
arithmetic calculus, e.g., using derivatives and integrals. In
the rest of this paper, we present in Section II relevant error
metrics used for the analysis of AC designs. In Section III
we delve into the proposed modeling technique of AC design.
Thereafter, we present experimental results in Section IV and
conclude this paper in Section V.

II. PRELIMINARIES

In this section, we overview conventional error metrics and
quality assessment methods used for AC design evaluation.
The generated error, due to the introduction of approximations,
must not surpass a given threshold in order to make the AC
design acceptable for practical usage. The output quality of an
AC design is assessed by measuring the error in one of these
forms:

• Error Distance (ED) is the arithmetic difference between
the exact value (Ev) and the approximate value (Av) for
a given set of inputs. Hence the ED can be written as:
ED = |Ev −Av|.

• Relative Error Distance (RED) is the ratio of the ED with
respect to the exact value (Ev), i.e., RED = ED

Ev
.

• Mean Error Distance (MED) is the average of all ED in
space.

2

• Normalized Mean Error Distance (NMED) is measured to
have a better analysis for the worst case scenario error.
NMED is computed as NMED = MED

MAX with MAX
representing the maximum value in the domain, e.g., 255
for an 8-bit design.

• Mean Squared Error (MSE) provides a general overview
of the quality by a design for a given set of n outputs.

The MSE can be written as MSE = 1
n

n∑
i=1

ED2
i .

• Peak Signal to Noise Ration (PSNR) is used to measure
the fidelity of the design. The PSNR represents the
maximum possible value divided by the MSE and is
expressed as a logarithmic quantity. The PSNR can be
written as PSNR = 10 log10

(
MAX2

MSE

)
.

• Bit-Error Rate (BER) is the percentage of faulty bits
in the output. It is noteworthy that the BER does not
differentiate in error in the LSBs or the MSBs and thus
it neglects the arithmetic difference, i.e., error magnitude.

Given these various error metrics, the AC designer has
to carefully select the appropriate metric which is typically
defined by the targeted application. For instance, the quality of
a multimedia application is generally measured using PSNR.
This is due to the fact that each metric highlights a given
property of the results. Alternatively, it is noteworthy that the
position of an erroneous bit is important for an arithmetic
approximate unit. Thus, the BER metric is not the most
suitable one for arithmetic units due to its inherent indifference
of error occurring in the MSB, i.e., large error-magnitude,
or in the LSB, i.e., small error-magnitude. Furthermore, the
error or quality analysis of an AC hardware is generally
conducted using simulation by testing various sets of inputs
while logging the output. On the other hand, the simulation
can be performed for all possibilities in space, in a sub-domain
of interest or randomly [9]. A drawback of simulation-based
analysis regardless of the chosen domain is the requirement of
computation power, which can be unrealistic for large designs.
On the other hand, a probabilistic error estimation may not
represent the actual error rate.

III. PROPOSED MODELING

In this paper, we present the proposed modeling approach
for combinational logic circuits (AC circuits included) using
arithmetic calculus as depicted in Fig. 1. An arithmetic hard-
ware that accepts two binary inputs and generates one binary
output as shown in Fig. 1(a), can be modeled in the form of
Z = g(X,Y), where X and Y are the applied decimal inputs
and Z is the decimal output of the hardware unit as depicted
in Fig. 1(b). The aim of the proposed modeling technique
is to assess the quality of an approximate hardware using
Calculus theories instead of the commonly used techniques
as they are difficult even under bounded and well behaved
scenarios [10]. For instance, by using the Calculus theories
of derivatives and integrals, various error behaviors of the
AC circuit can be determined. Towards this goal, we propose
the implementation of two operations. The first operation
generates the Boolean equation of the outputs as function
of the Boolean inputs. The second operation is a conversion
of the generated Boolean equations in terms of the binary

representations of the inputs into a single decimal equation in
terms of the decimal representation of the inputs. To this aim,
we propose a three step conversion that consists of:
C1) Decimal to Binary converter.
C2) Equivalence of logic operation in arithmetic calculus.
C3) Binary to Decimal converter.
The third step (C3) of this conversion is commonly known,
i.e., (D)10 =

∑n−1
i=0 fi × 2i where (D)10 is the decimal value

of a n-bit binary number consisting of fi binary values. Its
computation complexity is also known to be O(1) since it is
the summation of n terms for an n-bit representation. In the
sequel, we describe the first two operations (C1 and C2) and
discuss their computation complexities.

(a)

Calculus Model
Z = g(X,Y)

X

Y

Z

(b)

Fig. 1: Schematic of the: (a) Hardware to be Assessed; and
(b) its Calculus Model

1) Decimal to Binary Conversion: The decimal to binary
conversion can be achieved by either dividing the decimal
number by two or finding the largest possible power of 2 that
is less than the decimal number. The first approach, which we
adopted in this work, computes the LSB first while the second
computes the MSB first. In the first approach, the remainder of
the n-th division by 2 will identify the n-th bit. Furthermore,
a division of 2 with the remainder of 1 identifies an odd
dividend while a remainder of 0 identifies an even dividend.
On the other hand, a similar property can be deduced for the
division of a number by looking at the fraction part of the
result, i.e., frac(x) = x − ⌊x⌋ where x is the result of the
division. The property classifies an even dividend when the
resulting division by 2 has a frac(x) ∈ [0; 0.5[while the
division of an odd dividend has a frac(x) ∈ [0.5; 1[. Hence,
the property of the resulting frac(x) can be used to deduce
the binary representation.

Table I shows the division of 22 by 2n, where we notice that
the binary representation of 22 matches the Boolean values
of frac

(
22
2n

)
∈ [0.5; 1[when we identify “true = 1” and

“false = 0”. Furthermore, if x
2n ≤ 0.5 then all the subsequent

divisions by 2n result in a frac(x) ≤ 0.5. Thus, all subsequent
divisions will result in a logic ‘0’ and a faulty deduction of a
logic ‘1’ in the MSB is not possible. For instance, all divisions
of 22 by 2n where n ≥ 6 will result in a frac(x) ∈ [0; 0, 5[
and hence all the deduced MSBs from the subsequent divisions
are logic ‘0’.

TABLE I: Decimal to Binary Conversion for x = 22
n 1 2 3 4 5 6 7
x/2n = 22/2n 11 5.5 2.75 1.375 0.6875 0.34375 0.171875
frac(x/2n) ∈ [0.5; 1[× ✓ ✓ × ✓ × ×
Binary Representation 0 1 1 0 1 0 0

3

Thereafter, we propose a mathematical function that classi-
fies any number x to one of two constants, i.e., 0 or 1, based
on its fractional part. Since the classification is periodic for
every interval of 1, we propose the usage of a sin function as
it offers periodic output. Moreover, in general, dividing any
mathematical function by its magnitude, i.e., absolute value,
results in a value of −1 or 1 if and only if its magnitude is not
0. Thus, applying this division to the sin function generates
a square signal that has two values −1 and 1. The proposed
mathematical equation with a period of 1 is:

h(x) = − sin(2πx)

|sin(2πx)|
(1)

Fig. 2 represents h(x) graphically. The proposed function
has a periodic interval of 1 with the half period being 0.5.
Subsequently the proposed h(x) shown in Eq. (1) classifies
all numbers x to −1 or 1 if the frac(x) ∈ [0; 0.5[or
frac(x) ∈ [0.5; 1[, respectively if and only if frac(x) ̸=
0 and frac(x) ̸= 0.5. Furthermore, since sin(kπ) = 0
for k ∈ N, the proposed h(x) in Eq. (1) is undefined if
frac(x) = 0 or frac(x) = 0.5. For this reason, we add
a small positive number, i.e., ε, to the argument of sin to
shift its graph to the left by a distance of ∼ ε. In general,
the upper bound of frac(x) for an n-bit representation when
frac(x) ∈ [0.5; 1[is equal to 2n−1

2n , i.e., x = (2n − 1)
where all its binary digits are logic ‘1’ and all division
results in frac(x) ∈ [0.5; 1[. Alternatively, the upper bound
of frac(x) ∈ [0; 0.5[for an n-bit representation is 2n−1−1

2n ,
i.e., all divisions result in frac(x) ∈ [0.5; 1[except the last one
where frac(x) ∈ [0; 0.5[. Hence, to avoid undefined results
we write ε <

(
1− 2n−1

2n

)
which can be simplified to ε < 2−n.

The added ε makes Eq. (1) defined when frac(x) = 0 and
frac(x) = 0.5 while computing the anticipated value when
frac(x) ∈ [0; 0.5[and frac(x) ∈ [0.5; 1[. On the other hand,
the binary numbers are 0, 1 instead of −1, 1; and x is a result
of division by 2n, the function h(x) proposed in Eq. (1) has
to be adopted to accommodate these behaviors. Hence, we
propose the addition of +1 and dividing the function by 2 to
achieve the 0 and 1 output. We replace x with X divided by
2n to represent the n-th bit. Therefore, the equation b(X,n)
that accommodates h(x) to the requirements stated earlier can
be written as:

b(X,n) = 0.5×

(
1−

sin
(
πX
2n + ε

)∣∣sin (πX2n + ε
)∣∣
)

(2)

using b(X,n), i.e., the n-th binary representation of X ,
proposed in Eq. (2), finding the n-th bit representation of
a number X is transformed to a relation that computes the

0.5 1 1.5 2 2.5 3

- 1

0

1

Fig. 2: Graphical Representation of h(x)

n-th digit independently without the need of computing the
preceding or succeeding bits. Since the usage of Eq. (2) to
compute the i-th and j-th binary representation of a decimal
number X (where i ̸= j) requires the same computational
complexity, i.e., by simply replacing n in Eq. (2) with i and
j, we identify the proposed conversion as an O(1) equivalence.

2) Logic Operators Equivalence: using the conversion
proposed earlier, the Boolean outputs of an arithmetic unit
that produces k binary outputs, i.e., f1, f2, ..., fk, and
accepts two n-bit and m-bit inputs, i.e., x1, x2, ..., xn and
y1, y2, ..., ym, can now be written in terms of the decimal
inputs, f1(X,Y), ..., fk(X,Y), instead of the binary inputs,
f1(x1, x2, ..., xn, y1, y2, ..., ym), ..., fk(x1, x2, ..., xn, y1, y2,
..., ym), where X and Y are the decimal representations
of the binary inputs x and y, respectively. The concept
can be generalized to any arithmetic unit that produces
k binary outputs, i.e., f1, f2, ..., fk, using m decimal
inputs, i.e., IN1, IN2, ..., INm, in the form of f1(IN1, IN2,
..., INm), ..., fk(IN1, IN2, ..., INm). The next step is to
convert the Boolean operations into arithmetic calculus
operations. This conversion aims to transform f1, f2, ..., fk
into arithmetic functions and hence the third step,
i.e., (D)10 =

∑k−1
i=0 fi × 2i, becomes a function of

the decimal inputs, e.g., IN1, IN2, ..., INm. Towards this
goal, we propose the usage of the equivalences shown in
Table II.

TABLE II: Logic-Arithmetic Equivalence

Gate Boolean Operator Arithmetic Equivalence
INV !A (1−A)
AND A ∧B A×B
OR A ∨B A+B − (A×B)
XOR A⊕B A+B − (2×A×B)

The equivalences for the OR and XOR operations do
not scale well when applied recursively, i.e., doubling the
size of the equation after every iteration. On the other
hand, the INV and AND equivalences scale linearly. Hence,
in the scope of our application, we propose rewriting the
OR operation in terms of INV and AND solely. For in-
stance, the Boolean operation A ∨ B ∨ C can be re-
written as A ∨ B ∨ C = A ∧ B ∧ C. Thereafter,
the arithmetic conversion of the three input OR becomes
{1− [(1−A)× (1−B)× (1− C)]} instead of {A+ [B +
C− (B×C)] −A× [B+C− (B×C)] }. Alternatively, the
XOR of n-terms is defined by the number of occurrences of
logic a ‘1’, i.e., odd and even occurrences of logic ‘1’ result
in a logic ‘1’ and ‘0’, respectively. Therefore, we propose
the usage of sin2

(
πx
2

)
. The proposed equation results in a

value of ‘0’ and ‘1’ when x is even and odd, respectively.
Subsequently, the XOR of n-terms, i.e., A1, A2, ..., An, can
be written as sin2

(
π×(

∑n
i=1 Ai)

2

)
. For instance, we convert

the Boolean operation A⊕ B ⊕ C using sin to an arithmetic
operation in the form of sin2

(
π×(A+B+C)

2

)
. The conversion

using the equivalences of INV and AND from Table II
along with the proposed alternative representations of OR and
XOR results in a constant growth of computation complexity.
Consequently, we identify the proposed conversion as O(1).

4

using the three consecutive conversions proposed in the
previous sections, the combinational circuit can be represented
in arithmetic calculus, i.e., Z = g(X,Y). The modeling
will allow the analysis of quality to be performed in a
mathematical manner rather than the usage of excessive sim-
ulation. For instance, if the targeted arithmetic operation is
multiplication, then the exact operation can be written as
f(X,Y) = X × Y . Thus, the error distance can be
analyzed using ED(X,Y) = |f(X,Y)− g(X,Y)|. Other
arithmetic metrics can also be modeled such as the RED
where it can be expressed as RED = ED(X,Y)

f(X,Y) . Moreover,
by computing the integral of ED(X,Y) the MED and
MSE metrics can be estimated. For instance, we can estimate
MED =

[
1

Xlimit×Ylimit

∫Xlimit

X=0

∫ Ylimit

Y=0
ED(X,Y) dY dX

]
and the estimate of the MSE can be computed as MSE ={

1
Xlimit×Ylimit

∫Xlimit

X=0

∫ Ylimit

Y=0
[ED(X,Y)]

2
dY dX

}
. Sub-

sequently we can compute NMED and PSNR. Moreover,
the worst-case error, i.e., max(ED(X,Y)), can be found by
studying the sign of the derivative of ED(X,Y) and hence
determining the peak point(s) of the function ED(X,Y). On
the other hand, if for some specific applications the BER
metric is the point of interest, the proposed modeling technique
can be adapted to analyze AC configurations in such fashion.

In summary, the proposed calculus modeling and three-
step conversion operations (C1-C3) have a constant growth
in the computation complexity, i.e., O(1), where the number
of mathematical operations have a constant growth regardless
of the size. We will show its application on large design spaces
in the forthcoming experimental results section.

IV. EXPERIMENTAL RESULTS

The proposed mathematical modeling of AC circuits is
tested on i) an array multiplier, and ii) a SOBEL filter [11]
using Wolfram Mathematica [12]. Moreover, the conversions
of Boolean equations to a single calculus equation requires
to search for patterns in the text and modify appropriately.
For this purpose, we used REGEX [13] as it is one of the
simplest and efficient way to search and replace patterns in
a text. The Mathematica scripts and REGEX replacement

are executed on a computer with Intel(R) Core(TM) i5-
4278U CPU @ 2.60GHz and 8GB of RAM running macOS
10.15.

A. Evaluating Correctness of the Calculus Modeling

As a first study, we tested the proposed decimal to binary
conversion, i.e, Eq. (2), in order to validate its correctness.
For this purpose, we tested all X < 216 where X ∈ N with
results in line with the conventional decimal to binary con-
version. As a next step, we validated the proposed modeling
of combinational circuits, where the results of this study are
summarized in Fig. 3 which represents the output values for
a 4× 4 multiplier when generated using different approaches.
Fig. 3(a) represents the contour plot of X × Y for all values
less than 16. Fig. 3(b) depicts the contour plot for the exact
implementation of the 4 × 4 multiplier when modeled using
the proposed calculus modeling. Figs. 3(c) and 3(d) represent
the contour plot for an approximate multiplier when the
data is computed using simulation and the proposed calculus
modeling, respectively. From all plots, presented in Fig. 3,
we can notice that the pattern of output is preserved. The
difference between the plots comes from the fact that the
proposed binary conversion is a step function in the continuous
domain, i.e., X ∈ R. Fig. 4 depicts the plot of a number
X , and its decimal value when generated from its binary
representation proposed in Eq. (2). We can notice that the
values generated by the conversion are exact only when X ∈ N
while the error is present when X ∈ (R+ − N). Moreover,
one major difference between Figs. 3(c) and 3(d) is the fact
that the simulation data is in a discrete domain, while the
latter is in a continuous domain. To this aim, we analyzed the
equation used in Fig. 3(d) in a discrete domain, i.e., X ∈ N,
and the output values computed matched with the data used to
generate Fig. 3(c). Similarly, we analyzed the equation used
to generate Fig. 3(b) in a discrete domain and the resulting
values are equal to the exact values. Furthermore, since the
proposed modeling technique saves computation power when
analyzing large circuits, a noisy analysis of output can be
deemed acceptable.

0 3 6 9 12 15
0

3

6

9

12

15

X

Y

Output Value

25 50 75 100 125 150 175 200

(a)

0 3 6 9 12 15
0

3

6

9

12

15

X

Y

Output Value

25 50 75 100 125 150 175 200

(b)

0 3 6 9 12 15
0

3

6

9

12

15

X

Y

Output Value

25 50 75 100 125 150 175 200 225

(c)

0 3 6 9 12 15
0

3

6

9

12

15

X

Y

Output Value

25 50 75 100 125 150 175 200 225

(d)

Fig. 3: Contour Plot for: (a) X × Y ; (b) Exact Hardware Implementation using the Proposed Mathematical Modeling; (c)
Approximate Implementation using Simulation Data; and (d) Approximate Implementation using the Proposed Mathematical
Modeling

5

y = X y = ∑ 2n b(X,n)

2 4 6 8 10 12 14 16
X

2

4

6

8

10

12

14

16

y

Fig. 4: Decimal Values and the Regenerated Decimal Values
from their Binary Representation using Eq. (2)

Fig. 5: Hardware Implementation of the SOBEL Filter

(a) (b) (c)

Fig. 6: (a) Input Image; (b) Computation of the SOBEL Filter when using Simulation; and (c) Computation of the SOBEL
Filter when using the proposed Calculus Modeling

B. Modeling Multi-Operations Design

In the second investigation, we applied our methodology
on a SOBEL filter [11] which identifies edges by detecting
the minimum and maximum values in the first derivative
of the image. Its implementation consists of Carry-Ripple
Adders (CRAs), Squaring Units, Square Root, and Multi-
plexer, as shown in Fig. 5. The SOBEL filter was successfully
modeled using the proposed Boolean to calculus conversions.
On the other hand, since the SOBEL filter is a system that ac-
cepts more than 3 variables, representing the output in a plot is
not feasible. Alternatively, we showcase the study by applying
the SOBEL filter on the ‘camera man’ image, i.e., Fig. 6(a).
The resulting computations when using simulation and the
proposed calculus modeling are shown in Figs. 6(b) and 6(c),
respectively. The numerical values obtained when using both
techniques are identical. It must be noted that designs con-
sisting of multi-operations, e.g., addition and multiplication,
where only part of the design is approximated can be modeled
in a hybrid mode. For instance, if the 16-bit CRA and the
Square Root shown in Fig. 5 are exact operations while
the other operations are approximated, then the final output
can be written as Output =

√
In1 + In2 where In1 and

In2 are the results from the squaring units, i.e., models of
the approximate operations. Using such hybrid modeling will
reduce the complexity of the equations and thus allowing
the proposed technique to have a better scalability for more

complex designs. Furthermore, the hybrid modeling will result
in a faster quality assessment when compared to pure system
modeling.

C. Extensibility of the Proposed Mathematical Modeling

In a different examination of the proposed mathematical
modeling, we studied the extensibility to larger designs,
i.e., 32-bit and 64-bit multipliers. The runtime to generate
Boolean equations for given approximate 32-bit and 64-bit
array multiplier configurations are shown in Figs. 7 and 8.
The time consumed per row in the tree of the array multiplier
and the cumulative runtime for the 32-bit array multiplier
are shown in Fig. 7. The generations of Boolean equations
for the 32-bit approximate multiplier topped at 1,453 sec-
onds (∼24 minutes). On the other hand, as depicted in
Fig. 8, the generation of the equation for the 64-bit multiplier
presented an exponential growth in the runtime. As a result, we
terminated the experiment after generating the equations for
the first 22 rows, which required 25,560 seconds (∼7 hours).
It must be noted that the generation of the Boolean equations
grows exponentially. However, if the output equations were
successfully generated, the subsequent operations would have
been successful as they are of O(1). Furthermore, assessing
the quality using the mathematical modeling for the 32-bit
multiplier took 11 hours of computation time. This brings
a total of 11.5 hours to analyze a 32-bit multiplier from

6

T
im

e
(s

ec
on

ds
)

0

400

800

1,200

1,600

Row #

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Cumulative Runtime Runtime of Row#

Fig. 7: Runtime to Generate the Output Equations for a 32-bit Array Multiplier

T
im

e
(s

ec
on

ds
)

0

7,500

15,000

22,500

30,000

Row #

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Cumulative Runtime Runtime of Row#

Fig. 8: Runtime to Generate Some of the Output Equations for a 64-bit Array Multiplier

start to finish. On the other hand, if the same design had
to be analyzed using excessive simulation using an HPC,
the projected runtime is estimated to be in the range of
3.4 to 4.3 × 1010 hours, i.e., thousands of decades.

Based on the investigations performed, we observe that
using the proposed mathematical modeling provides a reduc-
tion of the time spent to perform the quality assessment.
For instance, the quality assessment of the 224 approximate
configurations of the 16-bit multiplier took less than 1 day.
Similarly, the assessment time of the 32-bit multiplier took
11.5 hours instead of decades.

V. CONCLUSION

Approximate computing is gaining traction as an alter-
native to conventional computation units since they offer
large savings in various physical aspects. Many techniques of
approximation have been proposed so far yet most of them
are tested in a limited set of configurations. Thus, a wide
study using DSE tools is essential in order to discover the
limitations and the outstanding configuration(s) of previously
proposed techniques. In this paper, we proposed a modeling
technique that uses calculus math to model arithmetic circuits.
The proposed technique permits the quality analysis to be
performed in math instead of simulation and thus resulting in
a huge savings in analysis time. The proposed modeling has
been tested in various aspects with the aim of determining
its correctness, capabilities and limitations. The methodology
has been tested for a hardware implementation that accepts
multivariate and incorporates various operations, i.e., the SO-
BEL filter. The proposed modeling is able to model various
approximate configurations and can support a wide range of
error metrics. As a future work, we plan to integrate the
proposed modeling technique in a DSE tool in order to provide
a tool that efficiently finds the most suitable design.

REFERENCES

[1] Dell Press Release. New digital universe study reveals big
data gap less than 1 of world s data is analyzed less
than 20 is protected. Last Accessed September 26, 2024.
[Online]. Available: https://www.dell.com/en-us/dt/corporate/newsroom/
announcements/2012/12/20121211-01.htm

[2] IDC. Data creation and replication will grow at a faster rate than
installed storage capacity, according to the idc global datasphere and
storagesphere forecasts. Last Accessed September 26, 2024. [Online].
Available: https://www.businesswire.com/news/home/20210324005175/
en/

[3] IDC Blog. Future of industry ecosystems: Shared
data and insights. Last Accessed September 26,
2024. [Online]. Available: https://blogs.idc.com/2021/01/06/
future-of-industry-ecosystems-shared-data-and-insights/

[4] Taiwan Semiconductor Manufactoring Company. Fab capacity. Last
Accessed September 26, 2024. [Online]. Available: https://www.tsmc.
com/english/dedicatedFoundry/manufacturing/fab capacity

[5] J. Han and M. Orshansky, “Approximate computing: An emerging
paradigm for energy-efficient design,” in European Test Symposium.
IEEE, 2013, pp. 1–6.

[6] S. Venkataramani, S. T. Chakradhar, K. Roy, and A. Raghunathan,
“Approximate computing and the quest for computing efficiency,” in
Design Automation Conference. ACM, 2015, pp. 1–6.

[7] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and M. Rinard,
“Managing performance vs. accuracy trade-offs with loop perforation,”
in European Conference on Foundations of Software Engineering.
ACM, 2011, pp. 124–134.

[8] V. Gupta, D. Mohapatra, A. Raghunathan, and K. Roy, “Low-power
digital signal processing using approximate adders,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 32,
no. 1, pp. 124–137, 2013.

[9] D. Hernández-Araya, J. Castro-Godı́nez, M. Shafique, and J. Henkel,
“AUGER: A tool for generating approximate arithmetic circuits,” in
Latin American Symposium on Circuits & Systems. IEEE, 2020, pp.
1–4.

[10] O. Keszocze, M. Soeken, and R. Drechsler, “The complexity of error
metrics,” Information Processing Letters, vol. 139, pp. 1–7, 2018.

[11] I. Sobel and G. Feldman, “A 3×3 isotropic gradient operator for image
processing,” Pattern Classification and Scene Analysis, pp. 271–272, 01
1973.

[12] Wolfram. Wolfram mathematica: Modern technical computing. Last
Accessed September 26, 2024. [Online]. Available: https://www.
wolfram.com/mathematica/

[13] J. Goyvaerts. The premier website about regular expressions.
Last Accessed September 26, 2024. [Online]. Available: https:
//www.regular-expressions.info/

