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Abstract— Sign language (SL) is used as primary mode of 

communication by individuals who experience deafness and 

speech disorders. However, SL creates an inordinate 

communication barrier as most people are not acquainted with it. 

To solve this problem, many technological solutions using 

wearable devices, video, and depth cameras have been put forth. 

However, the ubiquitous nature of cameras in contemporary 

devices has resulted in the emergence of sign language recognition 

(SLR) using video sequence as a viable and unobtrusive 

substitute. In this study, we utilized 2D videos as the primary 

sensing modality from which we extract pose sequences. Our 

proposed approach comprises three key stages: pose extraction, 

handcrafted feature generation, and feature space mapping and 

recognition. Initially, an efficient off-the-shelf pose extraction 

algorithm is employed to extract pose information of different 

body parts of each subject in a video.  Then, a multi-input stream 

has been generated using handcrafted features i.e., joints, bone 

lengths, and bone angles. Finally, an efficient and lightweight 

model based on a residual graph convolution network (ResGCN) 

along with efficient attention mechanisms is proposed to encode 

body’s spatial and temporal motion in a compact feature space 

and recognize the signs performed. In addition to enabling 

effective learning during model training and offering cutting-edge 

accuracy, the proposed model significantly reduces computational 

complexity. Our proposed method is assessed on five challenging 

SL datasets, WLASL-100, WLASL-300, WLASL-1000, LSA-64, 

and MINDS-Libras, achieving state of the art (SOTA) accuracies 

of 83.33%, 72.90%, 64.92%, 100±0%, and 96.70± 1.07%, 

respectively using pose-based method. Compared to previous 

approaches, we achieve superior performance while incurring a 

lower computational cost. 

Index Terms— ResGCN, Pose Sequence Modeling, SLR, Part 

Attention, Visualization, Muli Input Architecture. 
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I. INTRODUCTION 

ign languages (SLs) are non-verbal forms of 

communications used by deaf and speech impaired 

people all over the world to communicate with audially 

unaffected individuals. These languages are largely 

communicated by physical movements of hands and arms, but 

head, lip, eye, and brow movements are also very helpful. The 

visual signals are mainly generated by hands and body and are 

decoded by the eyes [1]. Sign language recognition (SLR) 

endeavors to translate these visual signals produced by 

individuals who communicate using sign language into speech 

or text, ultimately serving as a medium to establish effective 

communication between them and audially unaffected people. 

This, in turn, increases accessibility of resources for the deaf 

and speech impaired population, providing them with more 

opportunities. Because of this, automated SLR is a particularly 

intriguing area of research that calls for knowledge in both 

computer vision and natural language processing to effectively 

comprehend the spatiotemporal linguistic constructions of 

performed signs. There are more than 300 sign languages used 

worldwide and each one of them has its own fundamental 

structure, grammar, as well as subtleties and articulators that 

enable its users to express themselves successfully. SLR can 

also play a significant role for human-computer interaction 

(HCI) to encourage interaction between people and machines.  

Isolated SLR (ISLR) and Continuous SLR (CSLR) are two 

subcategories of Sign Language Recognition (SLR). While 

CSLR processes entire utterances comprising multiple sign 

glosses for translation, ISLR classifies individual sign records 

into corresponding gloss categories.  

A sign gloss is made up of manual features i.e., hand 

shape, palm orientation, and precise hand motions and non-

manual features i.e., facial expressions and body posture [2] as 

shown in Fig.1.  

As these features cover small areas in the entire video frame, 

the background clutter can easily distract the network from 

learning discriminative spatiotemporal features and degrading 

model’s performance. Additionally, videos have redundancy 

along temporal dimension and motions between adjacent 

frames are not significant which makes it difficult for models 

S 

Fig. 1. Manual and Non-Manual sign language (SL) features 
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to learn embeddings by focusing on significant spatial and 

temporal regions. Despite the significant strides made by deep 

learning in advancing SLR systems, there remain these 

significant challenges that impede the full realization of their 

potential and continue to pose significant obstacles to the 

development of highly accurate and generalizable SLR 

systems. Prior studies have demonstrated that the utilization of 

pre trained 2-Dimensional convolutional neural networks (2-D 

CNNs) as frame level spatial features extractors, along with a 

subsequent late fusion of these extracted features, can enhance 

the performance of video classification tasks to a significant 

extent. However, this approach ignores the temporal 

dependencies between neighboring frames and thus leads to 

poor recognition performance [3, 4]. To accurately capture the 

temporal information, the idea of feeding high level spatial 

features extracted using 2-D CNNs to recurrent neural 

networks (RNNs) has been investigated in [5-8]. To 

effectively capture low level and high level spatial and 

temporal features, 3-D CNNs have also been employed in [9-

11]. However, 3-D CNNs have the drawback that they have a 

large computational cost and are thus difficult to tune. 

Moreover, they also suffer from optimization problems 

because of joint time and space modeling. 

Some studies have focused only on the hand’s motions. 

Hands are segmented from video frames using external tools 

such as hand detection [4, 5, 12] and fed as input to the deep 

learning models, but the performance of these approaches is 

strongly reliant on these techniques and overlooks nonmanual 

aspects. Various attention mechanisms have also been 

investigated and have shown significant improvements for 

SLR [13-17]. Several studies [18-21] leverage human pose 

information obtained using efficient pose extraction 

algorithms. A Human pose is composed of skeletal joints 

landmarks and bones connecting these joints. Models that 

employ skeletal data as input are light, compute-efficient, and 

have comparable accuracies all of which greatly boost their 

potential for usage in daily life. 

In this work, we propose a novel three-step approach for 

enhancing the accuracy and efficiency of SLR. Our proposed 

approach leverages the pose information of human hands and 

upper body as inputs. To effectively model the spatial features 

and temporal dependencies in SL, we propose a multi-input 

graph convolution network with enhanced attention 

mechanism. As a baseline, we adopt the ResGCN [22] model 

which is based on spatiotemporal graph convolution (ST-

GCN) blocks and employs residual connections for 

dimensionality reduction. We employ a multi-input network 

and an early fusion scheme to reduce computational 

complexity. Moreover, a novel part-based attention model is 

developed to eliminate irrelevant information and extract 

additional discriminative spatiotemporal features by focusing 

on most significant body parts and joints in a sign sequence. 

Experiments demonstrate that our proposed model exhibits 

substantial performance enhancement over SOTA SLR 

methods on the WLASL, LSA-64, and MINDS-Libras 

datasets while being computationally efficient.  

The rest of this article is structured as follows. Section-II 

reviews the related works for SLR. In Section-III, each subpart 

of our proposed SLR method is described in detail. 

Experimental results, computational efficiency analysis, 

ablation studies, and Visualization and Explanations are 

presented in Section-IV. Finally, section-V concludes the 

paper. 

II. RELATED WORK 

Advancements in deep learning architectures, coupled with 

the availability of high-performance computing resources, 

have enabled the development of deep models capable of 

processing multimodal data for SLR. The field of automatic 

SLR shares certain areas of overlap with action recognition, 

leading to a considerable influence of action recognition 

network designs on methods proposed for addressing the SLR 

problem. The three primary components of the automatic SLR 

problem involve the selection of the suitable input modality, 

the extraction of spatiotemporal features from the input data, 

and classification based on these features.  Various approaches 

have been proposed for each of these phases which can be 

explained under four categories: 

• Input Modality 

• Spatiotemporal Feature Extraction 

• Attention Mechanisms for SLR 

• Sign Language (SL) Datasets 

A. Input Modality 

 

Fig. 2. Data Modalities used for sign language recognition. 
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In general, the two main input modalities considered for 

SLR are wearable sensors based and vision based as shown in 

Fig. 2. Glove-based models utilize specific mechanical or 

optical sensors affixed to a glove to leverage electrical signals 

for identifying hand positions, whereas vision-based models 

employ video data of the signers to recognize different signs. 

Further details are provided in respective subsections.  

1. Glove-Based/Wearable Sensors Modality 

In literature, various wearable sensors-based modalities have 

been used to capture the spatiotemporal motion patterns of 

performed signs. i.e. Hand tracking is done using an 

electromyography (EMG) bracelet called MYO in [23] and K-

NN and SVM were used for sign classification. In [24], a 

wearable system for SLR has been proposed that fuses the 

information from surface EMG (sEMG) sensors and an 

inertial sensor. A wearable system consisting of six inertial 

sensors and a hand glove equipped with ten flex sensors has 

been proposed in [25] for signer independent SLR. 

Nevertheless, these techniques are highly invasive, limit 

movement, and encroach upon daily activities. In [26], a 

multi-frequency RF sensor network was suggested for the 

recognition of American sign language. Subsequently, a Short-

Time Fourier Transform was implemented to detect distinct 

motion patterns in RF data attributed to the micro-Doppler 

effect, and machine learning algorithms were employed to 

analyze the linguistic properties of this data. The recognition 

accuracy of this technique is notably lower in comparison to 

other methodologies. 

2. Visual Modality 

In recent years, several visual data modalities have been used 

in the field of SLR. Two popular forms of data utilized in 

models for SLR are RGB and depth. While high-resolution 

material is included in RGB photos or videos, depth inputs 

encompass accurate details regarding the displacement 

between the image plane and the corresponding object. Some 

hybrid models have combined these modalities. Another 

comparatively less popular modality is thermal modality [27] 

that uses infrared thermal sensors for imaging objects and 

scenes. Another data modality that has been frequently 

employed by researchers is flow information, which refers to 

the motion aspects of each pixel in a video sequence. Mainly, 

two types of flow information i.e., optical flow (OF): A 

displacement vector of pixel coordinates in RGB sequence and 

scene flow (SF): A dense or semi dense 3D motion field of a 

scene in a depth sequence, are used. However, all these 

modalities suffer from high data dimensionality problem. In 

recent years, skeleton/pose based modality [18-21] has gained 

significant attention because of low data dimensionality. Pose 

consists of encoded form of joint sequences. However, till 

now pose based models were not able to surpass appearance-

based methods in terms of accuracy. For our work, we have 

used pose data as input modality and proposed model is able 

to achieve SOTA accuracies for SLR. 

B. Spatiotemporal Feature Extraction for SLR 

In the conventional approaches, spatial representations were 

created using manually crafted features such as Histogram of 

Gradients, Scale Invariant Feature Transform, motion velocity 

vector, and frequency domain features [28-31]. To address 

disparate frame rates and account for temporal dependencies, 

approaches such as Condition Random Fields, Hidden Markov 

Models [32, 33], and Dynamic Time Warping were employed. 

With the emergence of deep learning frameworks, several 

vision tasks including object detection, image classification, 

and action recognition have greatly benefitted from 2-D 

CNNs. Image-based 2-D CNN models have been extended to 

video tasks using late fusion methods for action class 

prediction [3]. 

In recent years, 3-D CNNs are able to encode spatial and 

temporal information effectively and accurately making them 

a suitable choice for appearance based SLR [13, 18, 34]. The 

C3D [35]  model was the inaugural 3-D CNN introduced for 

action recognition. The I3D [9] design, which was employed 

for SLR in [18, 36], was one of many 3D CNN action 

recognition architectures for SLR adaptations that quickly 

followed. A method for recognizing and teaching sign 

language is proposed in [37]. This SLR system uses a 

spatiotemporal network to perform the semantic classification 

of a provided sign language video, and an educational system 

is proposed to detect the learners' failure modes and provide 

instruction on the appropriate signing techniques. In [38], the 

problem of SLR is solved under a zero-shot learning 

paradigm. From sign language dictionaries, auxiliary 

information in the form of textual sign descriptions and 

characteristics is gathered and is used for knowledge transfer. 

Some architectures have utilized a single-colored motion 

history image (MHI) [39] to encode the entire sign video and 

then applied an I3D model to capture spatiotemporal 

dependencies. To learn more complicated motions inside the 

signing area and to disregard the background of the videos, 

depth cameras have also been examined as a possible tool for 

this job. Previous studies have utilized ensemble models such 

as conditional random fields [32] or multi-layered random 

forests [40] on top of depth representations. However, 

methods using 3-D CNNs and RGB or depth modalities are 

compute intensive.  

Due to reduced dimensionality of human skeletal joints, pose- 

based SLR is gaining researchers interest. These methods are 

predicated on the idea that the signer's body, hands, and, in 

certain cases, face may provide sufficient information required 

to identify the performed sign. Using Pose data, two baselines 

using gated recurrent unit (GRU) and temporal graph 

convolution network (TGCN) have been proposed in [18]. In 

[19], spatial features are extracted using GCNs and temporal 

features are extracted using a BERT model, and final 

predictions are generated using late fusion scheme. A pose-

based transformer architecture is proposed for SLR in [20]. A 

modified GRU is proposed in [21] to encode spatiotemporal 

relationships and is tested with pose based SL data. Although 

these methods significantly reduce computational complexity 

but are currently less accurate than appearance-based methods. 

C. Attention Mechanisms 

Attention plays a vital role in the way humans perceive 

information. Concentration on task-critical discriminative  
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information is a hallmark of the attention process. Attention 

mechanisms i.e., spatial, temporal, channel, and self-attentions  

assist models to focus on the most significant information and 

thereby improving model’s performance. Various attention 

schemes have been proposed for SLR. For large-vocabulary 

isolated SLR, an attention-based C3D [13] has been proposed 

which employs multimodal inputs. A multi-head attention-

based transformer encoder was proposed by [14] for SLR. In 

[15], a self-attention mechanism has been proposed for 

efficient aggregation of hand features with their appropriate 

spatiotemporal context to effectively recognize sign language. 

Transformer-based encoder-decoder structures with channel 

wise self-attention and multichannel attentions were proposed 

in [16, 17] for sign language translation.  

D. Sign Language Datasets 

There are more than 300 sign languages used by individuals 

with hearing and speech disabilities. A variety of publicly 

accessible datasets are available for SLR. These datasets vary 

based on regional sign languages, continuous or isolated sign 

languages, data sizes, signer counts, data collection methods, 

and signer dependencies. Table I lists the most recent and 

relevant visual isolated SL datasets. For each dataset, six 

variables including Year, name of dataset, Country, total count 

of sign classes, number of signers, and total count of video 

samples, are specified. Although these datasets target various 

sign languages, American Sign Language (ASL) has garnered 

increasing attention owing to its popularity and usage. As 

shown in Table I, it would be preferable to increase the 

number of sign categories to have a more accurate 

generalization of the proposed approaches for practical 

applications. Therefore, we have tested our model on 

WLASL-100, WLASL-300, WLASL-1000, LSA-64, and 

MINDS-Libras datasets and have established SOTA 

accuracies. 

III. METHODOLOGY 

In this section, we provide details of our proposed pipeline 

and individual components of proposed architecture.  Our 

proposed pipeline as shown in Fig. 3 consists of three stages. 

The first stage is extracting hand and body pose information 

from RGB video sequence. The second stage deals with data 

pre-processing and frame sampling. After pre-processing, 

multi-inputs consisting of joints and bones information are 

created and forwarded to MIPA-ResGCN architecture for 

spatiotemporal feature extraction. Finally, a class label is 

predicted for the provided sequence. Further details of the 

proposed approach are provided in the subsequent sections.  

A. Stage 1: Pose Extraction 

In the past, several techniques have been proposed to 

determine a human pose from RGB photos or video sequences 

[45-48]. It is crucial to have a reliable pose estimator because 

SLR is reliant on hand shapes and locations. The proposed 

approach utilizes an open-source framework called MediaPipe 

Holistic [48] which uses a hybrid architecture to construct 

pipelines for processing perceptual data, such as images and 

videos. To estimate the pose of the face, body, and hands 

regions for every frame of the input video, the MediaPipe 

Holistic incorporates three distinct models: MediaPipe holistic 

face landmarks, pose landmarks, and hand landmarks detector. 

In our study, we utilized the hands and body pose information 

extracted using these submodules. The output of MediaPipe 

hands and pose landmarks detector is shown in Fig. 4.  

 

TABLE I 

SIGN LANGUAGE DATASETS INCLUDING RGB VIDEOS 

Year Dataset Country Class Numbers Subjects Samples 

2012 DGS [41] Germany 40 15 3000 

2016 LSA-64 [42] Argentina 64 10 3200 

2019 MS-ASL [36] USA 1000 222 25,513 

2020 AUTSL [43] Turkey 226 43 36,302 

2020 WLASL [18] USA 2000 119 21,803 

2021 MINDS-Libras [44] Brazil 20 12 1155 

Fig. 3. A complete overview of proposed approach 
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Thus, for an input video 𝒙𝒊 where {𝒙𝒊 ∈ 𝓡𝑻×𝑯×𝑾×𝑪}; with T, 

H, W, & C represent number of frames, height, width and 

number of channels in each frame respectively, the extracted 

pose will have the dimensions of {𝒙𝒊 ∈ 𝓡𝑻×𝑽×𝑭}: where T, V 

and F represent number of frames, number of joints per frame 

and number of features per joint respectively.  

B. Stage 2: Data Preprocessing 

Out of 75 landmarks generated using this model, we only 

used data for 65 landmarks. The set of 65 landmarks includes 

23 landmarks each for left and right arms, torso, as well as 

significant face nodes including the lips, eyes, ears, and nose 

and 21 landmarks for each hand (4 landmarks for each finger 

and one for wrist). Since lower body joints do not play a 

significant role in sign language recognition, they were 

discarded. Although MediaPipe provides 3D landmarks for 

each joint, the depth coordinates represented by z dimension 

are not very accurate [48] and introduce noise. Hence, in our 

approach, we have exclusively utilized 2D coordinates (x & y) 

for each joint. The MediaPipe Holistic pose estimation 

technique offers landmark coordinates that are normalized to 

[0, 1] with respect to the image width and height. In order to 

maintain a consistent scale, we shift these coordinates by [-

0.5, -0.5] and multiply them by 2. This process also ensures 

that the man is zero and standard deviation is unity. A Two 

noise transform is used to augment the data. It creates a copy 

of the input sequence. As the input videos lengths may vary 

and model requires a fixed length video as input, we have 

chosen a sequence length of 64. The 64 frames are obtained 

from the input video via a random start sampling strategy. 

Thus, the pose sequence 𝒙𝒊 forwarded as input to the model 

has dimension of {𝒙𝒊 ∈ 𝓡𝟔𝟒×𝟔𝟓×𝟐}. 

 

B. Stage 3: Proposed Architecture 

In this section, the details of our proposed architecture 

MIPA-ResGCN are illustrated. We build on our previous work 

SIGNGRAPH [49], in which we introduced the ResGCN [22] 

approach for skeleton-based sign language recognition. The 

implementation of SIGNGRAPH resulted in a significant 

performance improvement for pose-based SLR. In this work, 

We have extended SIGNGRAPH [49] by introducing a multi 

input architecture and an efficient part attention mechanism. In 

order to exhibit the efficacy of our model in learning the most 

distinctive features, we have also introduced the class 

activation map technique (CMAP) [50] to compute the 

activation of individual joints while performing a sign. In this 

section, the graph convolutions (GCN) being the fundamental 

component of our architecture will be firstly introduced 

followed by the details of MIPA-ResGCN architecture. 

 

1. Graph Convolution 

Firstly, we represent the human pose as a unidirectional graph 

G = (V, Ɛ) where V = {v1, v2, …., vn) is n number of nodes 

representing body and hand joints and Ɛ = {e1, e2, …., em) is m 

number of edges representing bones connecting these joints. 

The relationships between nodes and edges are modeled by an 

adjacency matrix  𝑨 𝝐 ℝ𝒏×𝒏. An entry Aij is equal to 1 if node i 

is connected to j otherwise it is zero. Each node in this graph 

has two channels representing x and y coordinates. In a pose 

sequence, the spatial graph convolution (SGC) for each frame 

can be defined as: 

𝑿𝒕
(𝒍+𝟏)

=  ∑ 𝓜𝒅
(𝒍)

𝟐

𝒅=𝟎

𝑿𝒕
(𝒍)

(𝑫𝒅
−𝟏/𝟐(𝑨𝒅 + 𝑰)𝑫𝒅

−𝟏/𝟐⨂𝜽𝒅
(𝒍)

)                     (𝟏) 

Where 2 is the maximum graph distance, 𝑿𝒕
𝒍  and 𝑿𝒕

(𝒍+𝟏)
 are 

input and output features for frame t and layer l, ⨂ represents 

element wise multiplication, 𝑨𝒅 is adjacency matrix of order d 

and I is the identity matrix to model self-loops. 𝑫𝒅 is degree 

matrix used to normalize 𝑨𝒅 and 𝓜𝒅
(𝒍)

 and 𝜽𝒅
(𝒍)

 are learnable 

weights. An L×1 temporal convolutional layer (TCN) is used 

to collect the contextual cues embedded in adjacent frames for 

the purpose of extracting temporal characteristics. L is a hyper 

parameter representing temporal window size. These SGC and 

2-D TCN are used to construct basic and bottleneck blocks for 

constructing a ResGCN architecture. 

 

2. ResGCN Architecture 

To address the problem of SLR, we have used ResGCN [22] 

architecture as baseline method. The spatiotemporal graph 

convolution (ST-GCN) serves as the foundation to construct 

basic and bottleneck blocks of this architecture.  
Basic Block: The basic block consists of a spatial basic block 

connected in series with a temporal basic block. Spatial basic 

block is constructed using a GCN layer followed by a batch 

normalization (BN) and Relu activation layer whereas 

temporal basic block is composed of a 2-D TCN layer 

followed by a BN and Relu activation layer. A block residual 

is used to feed the input of each block at its output.  

Bottleneck Block: Inspired by ResNet [51], the ResGCN 

architecture incorporates a bottleneck structure that enables a 

faster implementation of the model for both training and 

inference. The bottleneck block consists of a spatial bottleneck 

block connected in series with a temporal bottleneck block. By 

implementing the bottleneck with a reduction rate R, the 

number of feature channels is reduced. The spatial bottleneck 

block is constructed by adding two 1×1 convolution layers 

before and after a graph convolution layer. The first 1×1 

convolution layer reduces the number of channels at its output 

by (input channels/R) and forwards the output to graph 

convolution layer and the second 1×1 convolution layer 

increases the channels by (GCN layer output*R). The 

temporal bottleneck follows the same structure with the 

difference that GCN layer is replaced with a temporal 2-D 

convolution layer. Each bottleneck block uses a block residual 

mechanism to feed the input of each block at its output. The 

sizes of spatial and temporal kernels are kept as 3 and 9 

respectively and reduction rate R is set as 4. 

Multi-Branch Input: Most multi-branch networks operate by 

independently feeding data from various modalities to the 

same model, and subsequently merging the outcomes of these 

streams to form the ultimate decision. Although this approach 

Fig. 4. Pose Estimated using MediaPipe Holistic Framework 
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is effective for data augmentation and enhances the model 

performance but might lead to high computational expenses 

and difficulties in hyper parameters tuning for extensive 

datasets. Thus, we have extracted features from both input 

branches using bottleneck blocks and concatenated them at an 

early stage of our model as presented in Fig.7. The 

concatenated features are then fed to one main branch to 

extract discriminative features. The pose-based action 

recognition frameworks [22, 52] divide the input features into 

three categories: joints, velocities, and bones. Velocity doesn’t 

play a significant role in SLR because a sign can be performed 

faster or slower, but its context doesn’t change. Considering 

the mentioned reason, we have divided the input features into 

two categories: 1) joint positions and 2) bone features (lengths 

& angles).  

Suppose that the original 2D coordinate set of a sign sequence  

𝑿𝒕 ∈ 𝓡𝑪×𝑻×𝑽, where C, T, and V represent coordinates, 

frames, and nodes is extracted using pose extractor. The 

relative position ‘r’ of each joint is calculated with respect to 

the center node ‘c’ of the pose as follows. 
 

𝒓 =  {𝒗𝒕,𝒊 − 𝒗𝒕,𝒄| 𝒊 = 𝟏, 𝟐, … . , 𝑽, 𝒕 < 𝑻}   

𝒔. 𝒕. 𝒗𝒕,𝒄 = 𝒎𝒆𝒂𝒏(𝒗𝒕,𝒓𝒊𝒈𝒉𝒕𝒔𝒉𝒐𝒖𝒍𝒅𝒆𝒓, 𝒗𝒕,𝒍𝒆𝒇𝒕𝒔𝒉𝒐𝒖𝒍𝒅𝒆𝒓)             (𝟐) 

 

The original nodes and these relative positions are 

concatenated and sent as joint position input to the first 

branch. Next, bone features consisting of bone lengths and 

bone angles are computed. Bone length l is computed by 

subtracting each joint 𝐯𝐭,𝐢 from its adjacent joints 𝐯𝐭,𝐚𝐝𝐣. 

 
𝒍 =  {𝒗𝒕,𝒊 − 𝒗𝒕,𝒂𝒅𝒋| 𝒊 = 𝟏, 𝟐, … . , 𝑽, 𝒕 < 𝑻}                             (𝟑) 

 

Finally, Bone angle is computed as: 

 

𝜶 = {𝒂𝒓𝒄𝒄𝒐𝒔(
𝒗𝒕,𝒊 − 𝒗𝒕,𝒂𝒅𝒋

√∑ 𝒗𝒕,𝒊
𝟐

)| 𝒊 = 𝟏, 𝟐, … . , 𝑽, 𝒕 < 𝑻}           (𝟒) 

These bone features are concatenated together and sent as 

input to the second branch. 

Part Attention Module: Inspired by split attention model in 

[53], a part based attention module has been designed to 

capture the significance of each body part throughout the 

entire sign sequence. We have manually divided input features 

into five individual body parts P=5: face, left arm, right arm, 

left hand, and right hand based upon each part’s corresponding 

joints as shown in Fig. 5.  

To compute part attentions, the first step involves applying 

average pooling in the temporal dimension to the entire 

skeleton. The resulting feature maps are passed through a 2D 

convolution layer, followed by a BN and ReLU Layer. 

Afterward, attention matrices are calculated using five 2D 

convolution layers (one corresponding to each part) , and a 

part-level SoftMax is used to identify the most essential part. 

A final skeleton representation is formed by concatenating 

features of five parts with different attention weights. The 

overall framework of part attention module is presented in Fig. 

6. This attention block shown in Fig. 6 can be mathematically 

formulated as explained in Eq. (5a & b): 

𝒙𝒑 =  𝜸(𝜹(𝒑(𝒙𝒊𝒏)𝜽)𝜽𝒑)                     (𝟓. 𝒂) 

𝒙𝒐𝒖𝒕 = 𝒙𝒊𝒏 ⨂ (𝑪𝒐𝒏𝒄𝒂𝒕({𝒙𝒑|𝒑 = 𝟏, 𝟐, … , 𝑷}))            (𝟓. 𝒃) 

Where 𝒙𝒊𝒏  and 𝒙𝒐𝒖𝒕 represent input and output feature maps, 

𝜸(. ), 𝜹(. ) 𝒂𝒏𝒅  𝒑(. ) denote Softmax, ReLU and temporal 

average pooling operations respectively. Where 𝜽𝝐𝓡𝑪×
𝑪

𝑹 and  

𝜽𝒑𝝐𝓡
𝑪

𝑹
×𝑪

 are learnable parameters and C represents total 

channels in the layer and R is the reduction rate which is set as 

4. 

 

Fig. 5. An illustration depicting manually designed body parts. 

Fig. 6. The structure of proposed part attention block, where R(residual)=4 and C (channels in each layer) 
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The complete overview of the proposed architecture MIPA-

ResGCN is presented in Fig. 7. 

IV. RESULTS AND DISCUSSIONS 

In this section, we evaluate our proposed architecture on 

five publicly available SL datasets: WLASL-100, WLASL-

300, and WLASL-1000 [18], LSA-64 [42], and MINDS-

Libras [44], using four type of evaluation matrices accuracy, 

precision, recall, and F1 score. These matrices are computed 

using four values: True Positive Predictions (TPP), True 

Negative Predictions (TNP), False Positive Predictions (FPP), 

and False Negative Predictions (FNP). The following 

equations are used to compute accuracy, precision, recall, and 

F1 score. 

𝑨𝒄𝒄𝒖𝒂𝒓𝒄𝒚 =  
𝑻𝑷𝑷+𝑻𝑵𝑷

𝑻𝑷𝑷+𝑻𝑵𝑷+𝑭𝑷𝑷+𝑭𝑵𝑷
                      (6) 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =  
𝑻𝑷𝑷

𝑻𝑷𝑷+𝑭𝑷𝑷
                                      (7) 

𝑹𝒆𝒄𝒂𝒍𝒍 =  
𝑻𝑷𝑷

𝑻𝑷𝑷+𝑭𝑵𝑷
                                            (8) 

𝑭𝟏𝑺𝒄𝒐𝒓𝒆 = 𝟐 ∗ 
𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏∗𝑹𝒆𝒄𝒂𝒍𝒍

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏+𝑹𝒆𝒄𝒂𝒍𝒍
                           (9) 

We compare our results with SOTA approaches based on 

appearance and pose features. Additionally, we conduct 

ablation studies to elaborate the contribution of each 

component in the proposed architecture to the overall 

performance. 

A. Experimental Setup 

For our Experiments, we have represented the human pose 

sequence as a graph, based on a spatial configuration 

described in [54]. Our experiments are conducted using the 

PyTorch framework on a single NVIDIA 3080 RTX GPU. 

The model is trained for 350 epochs for WLASL-100, LSA-

64, & MINDS-Libras and for 600 epochs for WLASL-300 and 

WLASL-1000. The embedding size is set at 128 for WLASL-

100, LSA-64, and MINDS-Libras and set at 300 & 512 for 

WLASL-300 & WLASL-1000 respectively.  Further details 

are provided below: 

• Optimizer: Adam optimizer [55]  

• Batch size: 32.  

• Temporal kernel size L: 9  

• Maximum graph distance: 2  

• Spatial kernel size: 3 

• Learning Rate: Cyclic learning rate scheduler with a 

learning rate set to 0.01.  

• For model optimization, a cross-entropy loss 

measured by Eq. (10) is used as an objective 

function. 

 

𝑪𝒓𝒐𝒔𝒔 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑳𝒐𝒔𝒔 =  − ∑ 𝒚𝒊𝒍𝒐𝒈𝒚𝒊
^𝑪

𝒊=𝟏             (10) 

 

where 𝒚𝒊
^is the Softmax probability for the ith class and C 

represents the total number of classes. 

 

B. Results on WLASL Dataset 

Dataset Description: WLASL (word level American sign 

language) [18] is a recent and comprehensive dataset compiled 

from various online open sources, featuring a diverse range of 

signers, lighting conditions, and background variations. The 

dataset is divided into four subsets of data: WLASL-100, 

WLASL-300, WLASL-1000, & WLASL-2000. The number 

in each subset’s name corresponds to the number of sign 

glosses it contains. Further details are provided in Table II. 

Our study employs the same training, validation, and testing 

protocols as those specified by the authors of the dataset [18]. 
TABLE II 

 DETAILS OF WLASL SUBSETS 

Dataset -Subset Gloss count Video count 

WLASL-100 100 2,038 

WLASL-300 300 5117 

WLASL-1000 1000 13168 

WLASL-2000 2000 21,083 

Fig. 7. Overview of Multi Input Part Attention ResGCN (MIPA-ResGCN) architecture 
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Comparison with SOTA methods: This paper presents the 

top-1, top-5, and top-10 accuracy achieved by our architecture 

on the WLASL-100, WLASL-300, and WLASL-1000 

datasets. A comparative analysis between the proposed 

method and SOTA appearance-based and pose-based 

approaches is provided in Table III. 

Vs. Pose based: From Table III, the MIPA-ResGCN obtains 

an excellent performance of, 83.33%, 72.90%, and 64.92% 

thereby outperforming SOTA pose based method by 10.43%, 

1.5%, and 3.09% for WLASL-100, WLASL-300, and 

WLASL-1000 respectively.  

Vs. Appearance based: The proposed method exhibits 

superior performance compared to the SOTA appearance-

based method by 5.78%, 4.15%, and 8.24% for WLASL-100, 

WLASL-300, and WLASL-1000 respectively. Confusion 

matrix for WLASL-100 dataset, is shown in Figure 8. 

Confusion matrix represents a complete picture of sign 

recognition accuracy.  

Failure Cases: Our model shows excellent recognition 

performance across approximately the entire WLASL-100 

dataset, however, there are three signs: ‘same’, ‘pizza’, and 

‘school’ which our model finds difficult to recognize. All 

instants of sign “School” are recognized as “Paper” by the 

model. Upon investigation, it was observed that both the signs 

are performed in the same way as shown in Fig. 9, leading to 

difficulties in accurate recognition by the model. Moreover, a 

significant variability in the execution of the signs “1. Same” 

and “2. Pizza” by various signers was observed upon 

investigation also shown in Fig. 10. These ambiguities in the 

dataset: 1. different words signed in the same way, 2. same 

word signed differently by signers, lead the model to 

inaccurate gloss predictions.  

TABLE III 

PERFORMANCE COMPARISON OF PROPOSED ARCHITECTURE WITH SOTA METHODS ON WLASL-100, WLASL-300, WLASL-1000 

 

Data Type Model WLASL-100 WLASL-300 WLASL-1000 

  top 1 top 5 top 10 top 1 top 5 top 10 top 1 top 5 top10 

Appearance I3D [18] 65.89 84.11 89.92 56.14 79.94 86.98 47.33 76.44 84.33 

TK-3D Convnet 

[56] 

77.55 91.42 - 68.75 89..41 - - - - 

Fusion 3 [57]  75.67 86.00 90.16 68.30 83.19 86.22 56.68 79.85 84.71 

Pose Pose-GRU [18] 46.51 76.74 

 

85.66 33.68 64.37 76.05 30.01 58.42 70.15 

Pose-TGCN [18] 55.43 78.68 87.60 38.32 67.51 79.64 34.86 61.73 71.91 

GCN-BERT [19] 60.15 83.98 88.67 42.18 71.71 80.93 - - - 

MOPGRU [21] 63.18 - - - - - - - - 

SPOTER [20] 63.18 - - 43.78 - - - - - 

SIGNGRAPH [49] 72.09 88.76 92.64 71.40 92.26 94.16 61.83 85.87 91.04 

MIPA-ResGCN 

(Ours) 

83.33 92.64 95.35 72.90 88.92 93.41 64.92 88.37 92.16 

Fig. 10. Words (1. Pizza, 2. Same) Various instances of each 

word performed in entirely different ways by signers. 

Fig. 8. Confusion Matrix on the WLASL-100 dataset 

Fig. 9. Two different words (1. School, 2. Paper) performed in 

the same way by signers. 
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C. Results on LSA-64 Dataset 

Dataset Description: LSA-64 dataset targets vocabulary of 64 

different glosses from Argentinian sign language. It comprises 

50 video samples per class, with each class signed by 10 non-

expert signers. The 64 glosses include both verbs and nouns 

used in Argentinian sign language. The following setup is 

used for model training and evaluation. The data is divided 

into 80:20 for training and test purposes as per the protocol 

used by dataset authors. To determine the optimal model 

parameters, a k-fold cross-validation is employed on the 

training set with k=4. The results are evaluated over an 

average of five repetitions. 

Comparison with SOTA methods: We present the top-1 

accuracy of our architecture on LSA-64 dataset. We provide a 

comparison of our method to the current SOTA Appearance 

based, pose based, and hybrid approaches in Table IV. Our 

model can achieve SOTA 100±𝟎% accuracy on LSA-64 

dataset. The results represented with * are obtained as an 

average of 5 iterations. 

Confusion matrix and metrices representing accuracies, recall 

and precision of each class are shown in Fig. 11, clearly 

demonstrating an excellent performance of our proposed 

architecture towards sign recognition.  

D. Results on MINDS-Libras Dataset  

Dataset Description: MINDS-Libras [44] dataset targets a 

vocabulary of 20 different glosses from Brazilian sign 

language. The dataset comprises of 60 video recordings per 

category, each performed by 12 distinct signers, and recorded 

in a controlled environment with a static green background 

using a Canon EOS Rebel t5i DSLR camera and a Microsoft 

Kinect v2 to capture RGB and RGB-D sequences. For our 

work we use only RGB sequences to extract pose information. 

The following setup as proposed by [63] is used for model 

training and evaluation. The data is divided into 75:25 for 

training and test purposes as per the protocol used by dataset 

authors. A k-fold cross validation is employed on the training 

set with k=3 to find the best model parameters. The results are 

presented as an average of ten repetitions. 

Comparison with SOTA methods: We present the top-1 

accuracy of our architecture on MINDS-Libras dataset. We 

provide a comparison of our method to the current SOTA 

Appearance based approaches in Table V. Our model is able 

to achieve SOTA accuracies of 96.70±1.07% on MINDS-

Libras dataset.  Fig. 12 illustrates the precision, recall, F1 

score and confusion matrix for each sign in the dataset. Our 

proposed methodology has a minimum of 80% on all used 

matrices of Precision, Recall, and F1-score which can be 

considered as a very good model performance. The evidence 

supporting this claim can be seen in the confusion matrix, 

which demonstrates a high accuracy. 
 

 

 

 

 

 

TABLE IV 

ACCURACY COMPARISON WITH SOTA METHODS ON LSA-64 DATASET 

Data Type Model Top-1 Accuracy 

Appearance Based 

 

LSTM+LDS [58] 98.09 ± 0.59 * 

DeepSign CNN [59] 96.00  

MEMP [60] 99.06 

I3D 98.91 

Appearance + Pose 
 

LSTM+DSC [61] 99.84± 0.19* 

ELM+MN CNN [62] 97.81 

Pose Only 

 

SPOTER [20] 100.00± 0 * 

MOPGRU [21] 99.92 

MIPA-ResGCN (ours) 100.00± 0* 

Fig. 11. a). Confusion matrix b). Precision, recall, and F1-score for each sign class on LSA-64 dataset 
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E. Computational and Generalized Performance Analysis 

 

In this study, we conducted a comparison of our proposed 

architecture (MIPA-ResGCN) with I3D (an appearance-based 

method), SPOTER (a pose-based method), and SIGNGRAPH 

(a pose-based method) to evaluate the computational 

efficiency and model’s generalization performance. To begin, 

we compared the number of model parameters, finding that 

MIPA-ResGCN has 0.99 million while I3D has 12.4 million 

and SPOTER has 5.92 million model parameters. Next, we 

evaluated the computational complexity of each model by 

quantifying the number of floating-point operations and 

average time taken to process each video during inference 

stage, utilizing the FLOP profiler feature of the DeepSpeed 

library [64]. The evaluations were performed on a single 

NVIDIA RTX-3080 GPU. The results shown in Fig. 13 

demonstrate that our model has a much smaller number of 

parameters and inference time as compared to I3D and 

SPOTER and comparable compute performance to 

SIGNGRAPH with an accuracy increase by large margin. The 

number of GFLOPs required are much smaller as compared to 

I3D and comparable to SPOTER and SIGNGRAPH.  

To assess the generalizability and robustness of our proposed 

model, we conducted a series of experiments wherein we 

trained the model using smaller subsets of the training data 

and evaluated its performance on a fixed test set. These 

experiments were conducted on the LSA-64 data, which was 

partitioned into training and test sets at an 80:20 ratio. MIPA-

ResGCN, I3D, SIGNGRAPH and SPOTER models were 

trained with different splits of training data. Training was 

conducted using subsets of the training data ranging from 10% 

to the complete dataset, with 20% more data being added at 

each stage. To ensure uniform class distributions, training 

subsets were selected using a uniform sampling method. The 

resulting models were then evaluated on the fixed test set. The 

results, shown in Fig. 14, indicate that MIPA-ResGCN 

achieved an accuracy of 92% on test set when trained on just 

10% split of the training data, while SPOTER, SIGNGRAPH, 

and I3D models achieved an accuracy of 88.68%, 75% and 

TABLE V 

ACCURACY COMPARISON WITH SOTA METHODS ON MINDS-LIBRAS 

DATASET 

Type Model Top-1 Accuracy 

Appearance 

Based 

 

CNN3D  [58] 72.6 

CNN 3D [59] 93.3 ± 1.69 

GEI + SVD+SVM [63] 84.66 ± 1.78 

Pose Based MIPA-ResGCN (Ours) 96.70 ± 1.07% 

Fig. 12. a). Confusion matrix b). Precision, recall, and F1-score for each sign class on MINDS-Libras dataset 

Fig. 13. Comparison of MIPA-ResGCN (Proposed model), I3D, SIGNGRAPH and SPOTER in terms of number of 

parameters (millions), average FLOPS (G), and average inference time (sec). 



11 

 

45.47% respectively. The performance of MIPA-ResGCN 

continued to improve as the size of the training set increased, 

ultimately reaching an accuracy of 100% when trained on 50% 

of the training data. SIGNGRAPH achieved the accuracy of 

100 % at 70% split of training data, SPOTER achieved the 

accuracy of 100 % at 90% split of training data and I3D 

achieved the highest accuracy of 98.91% when trained on 

100% data. The results of the conducted experiments 

demonstrate that MIPA-ResGCN performs significantly better 

than SOTA SLR models even when trained with smaller data 

sizes.  

F. Ablation Studies 

 In this section, we conduct ablation studies to examine how 

different components, which were introduced in the baseline 

ResGCN model, contribute to its overall performance. The 

proposed model consists of ResGCN with a reduction rate (R) 

of 4 as a baseline model. The ResGCN model includes one 

basic and six bottleneck blocks followed by an average 

pooling and two fully connected layers. We have introduced 

two input branches consisting of joints and bones information 

as explained in section. III. Various attention mechanisms 

including part attentions, joint, and frame attentions have been 

tested. The results presented in Table VI clearly demonstrate 

that our model greatly benefits from multi-input structure. It 

improves the model’s performance significantly for all 

datasets. Inclusion of part attention mechanism also enhances 

the model performance by a huge margin. Overall best 

recognition accuracies are achieved by including both part 

attention and multi-inputs for WLASL-100, WLASL-300, and 

WLASL-1000 dataset. 

G. Visualizations and Explanations 

To showcase the efficacy of our model in learning the most 

distinctive features, we applied the class activation map 

technique [50] to compute the activation of individual joints 

within a video frame. These activation maps presented in Fig. 

15 depict the activated joints in various frames of a sequence. 

Joints with the highest activation are represented using 

brighter colors and on a larger scale in the visualization. It is 

evident from the results that out of the five body parts, our 

skeleton was divided in for part attention mechanism, the 

model pays higher attention to the left and right hands, as 

hands locations and movements are indeed the most 

distinguished features of sign language. Moreover, the model 

is also able to correctly capture the significance of each joint. 

The sign for “CHAIR” is performed by moving the index and 

middle fingers of right hand up and then bringing them down 

and touching the same two fingers of left hand. As can be 

seen, in the frames for sign class “CHAIR”, our model gives 

the most attention to the joints of these fingers. The 

observations align perfectly with the understanding that sign 

language relies heavily on the shapes, locations, and 

orientations of the hands.  

V. CONCLUSION  

 In this study, we propose an accurate and efficient method 

for pose-based isolated sign language recognition. The 

architecture uses an efficient pose extractor to extract pose 

information which is then divided into two branches: joints 

and bones, to construct the multi-input structure. This multi-

input is forwarded to ResGCN consisting of basic and 

bottleneck blocks and a proposed part attention mechanism to 

TABLE VI 

 ABLATION STUDIES OF MODEL COMPONENTS IN ACCURACY (%) FOR WLASL-100, WLASL-300, & WLASL-1000 DATASETS 

MI: MULTI INPUT, PA: PART ATTENTION, FA: FRAME ATTENTION, JA: JOINT ATTENTION 

Model WLASL-100 WLASL-300 WLASL-1000 

Baseline (ResGCN): using Bones only 48.06 47.75 46.59 

Baseline: using Joints only 72.09 71.40 61.83 

Baseline: using Bones only + PA 70.16 56.14 52.40 

Baseline: using Joints only + PA 75.19 71.71 63.54 

Baseline + MI (Using both Joints & Bones) 77.52 72.01 62.30 

Baseline + MI + FA 81.01 71.86 62.42 

Baseline + MI + JA 79.07 74.10 64.02 

MIPA-ResGCN (Baseline + MI + PA) 83.33 72.90 64.92 

Fig. 14. Top-1 accuracies of the MIPA-ResGCN, I3D, 

SIGNGRAPH, and SPOTER models trained on six subsets 

of the training data and evaluated on a fixed 20% test split. 
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force the model to learn the efficient spatiotemporal features 

by focusing on the most essential body parts and ignoring 

nodes with unnecessary information. Our results clearly 

demonstrate the model’s ability to learn strong temporal 

dependencies thereby providing SOTA accuracies on the 

challenging datasets of WLASL, MINDS-Libras, and LSA-64. 

Our model provides significant reduction in computational 

complexity and provides more generalizable results. 

Additionally, our visualizations of activated joints effectively 

illustrate that the model places a strong emphasis on the most 

crucial body parts in sign language: hand shapes, locations, 

and orientations, thereby supporting the assertions made in 

section-I. The proposed architecture will have a large 

influence on applications requiring gesture recognition. Our 

future work involves expanding the proposed architecture to 

incorporate appearance-based hand features, with the aim of 

enhancing recognition accuracy in critical scenarios where the 

same signs may be signed differently.  
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