
Formal Verification of Universal Numbers using

Theorem Proving

Adnan Rashid1*, Ayesha Gauhar1, Osman Hasan1, Sa’ed Abed2,
Imtiaz Ahmad2

1School of Electrical Engineering and Computer Science (SEECS),
National University of Sciences and Technology (NUST), Islamabad,

Pakistan.
2Computer Engineering Department, College of Engineering and

Petroleum, Kuwait University, Kuwait, Kuwait.

*Corresponding author(s). E-mail(s): adnan.rashid@seecs.nust.edu.pk;
Contributing authors: 14mseeagauhar@seecs.nust.edu.pk;

osman.hasan@seecs.nust.edu.pk; s.abed@ku.edu.pk;
imtiaz.ahmad@ku.edu.pk;

Abstract

Universal number (Unum) is a number representation format that can reduce
the memory contention issues in multicore processors and parallel computing
systems by optimizing the bit storage in the arithmetic operations. Given the
safety-critical nature of applications of Unum format, there is a dire need to
rigorously assess the correctness of Unum based arithmetic operations. Unums
are of three types, namely, Unum-I, Unum-II and Unum-III (commonly known as
Posits). In this paper, we provide a higher-order-logic formalization of Unum-III
(posits). In particular, we formally model a posit format (binary encoding of a
posit), which is comprised of the sign, exponent, regime and fraction bits, using
the HOL Light theorem prover. In order to prove the correctness of a posit format,
we formally verify various properties regarding conversions of a real number to a
posit and a posit to a real number and the scaling factors of the regime, exponent
and fraction bits of a posit using HOL Light.

Keywords: Universal Numbers, Posits, Theorem Proving, Higher-order Logic, HOL
Light

1

1 Introduction

Floating-point number format is widely used by the scientific community in application
areas ranging from the aerospace, applied mathematics, physics to weather forecasting,
for the representation of real numbers on a computer. Moreover, it is utilized for
the execution of various arithmetic operations, i.e., addition, subtraction, division
and multiplication, requiring an efficient hardware implementation. The IEEE-754
floating-point standard represents a real number as a signed fraction times an integer
power of 2, i.e., ±(1 + f)2e, where f is a fraction and e is an exponent, and allows
the representation of real numbers in computers using various bits. This includes the
handling of the rounding and fraction bits, and various invalid results, such as Not-
a-Number (NaN), which is returned as a result of an invalid arithmetic operation,
such as 0/0 or ∞ × 0. However, the IEEE-754 floating-point standard suffers from
various limitations, such as limited numerical precision as a result of allocating a fixed
number of exponent and mantissa bits, failure of the associative and distributive laws
of real number arithmetic due to rounding and the hardware cost for handling the
denormalized numbers.

1.1 Universal Numbers and their Applications

John L. Gustafson, in 2015, proposed Universal Numbers (Unums) [1] that can over-
come the above-mentioned limitations of the IEEE-754 floating point standard and
provide a more precise representation of real numbers for performing computer arith-
metics. There are three types of Unums, namely, Unum-I, Unum-II and Unum-III
(commonly known as Posits). Unum-I [1] has a variable-length format as opposed to
the fixed length floating-point number format and also provides a better numerical
accuracy. However, its variable-length format makes it unexciting for hardware imple-
mentations. Unum-II [1] exhibits some interesting characteristics, such as calculating
the exact reciprocal of a number and performing negation of a number simply. How-
ever, it requires pre-computed lookup tables to perform various arithmetic operations
that makes it impractical for larger arithmetic word sizes. Unum-III or Posits [2, 3] are
considered as the hardware-friendly version of Unums that provide an efficient uti-
lization of fixed bit sizes, resulting in higher accuracy arithmetic for a given storage
requirement, and are intended to be a drop-in replacement for the IEEE-754 format.
Posit exhibits various features, such as simple rounding, larger dynamic range, bet-
ter closure, no denormalized numbers to handle, and therefore simplifies the hardware
and software implementations. Moreover, posit arithmetic provides identical answers
on different computer systems, which is not possible using the IEEE-754 floating point
arithmetic standard. Posits do not overflow to infinity or underflow to zero. Moreover,
NaN provides an action rather than a bit pattern as in floating-point numbers. Also, its
processing unit takes less circuitry than the IEEE Floating-point Unit (FPU) [2]. All
these features lead to an improved memory bandwidth and power efficiency. Moreover,
posits have been implemented as an alternative to the floating-point number format in
hardware and software. For example, the hardware architecture of Unum adder/sub-
tractor and multiplier has been designed and implemented using Field-Programmable
Gate-Arrays (FPGAs). Moreover, a Verilog Hardware Description Language (HDL)

2

generator has been constructed for performing these arithmetic operations [4–6]. Soft-
ware libraries for posit-based floating-point operations are also available for C# [7],
C1, C++2 and Julia3 programming languages. Moreover, posits have outperformed the
fixed point number system, in terms of accuracy and memory utilization, in various
computational intensive applications, such as deep convolutional neural networks [8, 9].

1.2 State-of-the-art

The real number programs are widely used for analyzing the dynamics of the physical
systems in various applications, such as aerospace, robotics and physics. They use the
floating-point approximations resulting in the accumulation of floating-point inaccura-
cies that grow as the computation proceeds and thus introduce some unavoidable bugs
that may lead to dire consequences. For example, an error in the Floating-point Divi-
sion (FDIV) instruction of the Intel Pentium processors in 1994 resulted into a financial
loss of $475M4. Similarly, an uncaught floating-point exception resulted in the destruc-
tion of the Ariane 5 rocket shortly after its takeoff in 19965. The cost of such errors in
floating-point arithmetic is huge. The above-mentioned popular incidents due to such
errors resulted into replacement of a large number of processors having FDIV instruc-
tion errors, leading to a huge financial loss of $475M and destruction of the Ariane 5
rocket. Therefore, one can expect that similar kind of bugs today may cost tenfold of
that loss without performing an exhaustive analysis of arithmetic based on posits [10].
Moreover, the conventional computer based simulation and numerical analysis tech-
niques involve the unverified symbolic algorithms, discretization and numerical errors,
and thus cannot ascertain exhaustive analysis of the safety-critical systems. Therefore,
the formal verification of these number formats, performing various arithmetic, is a
dire need.

1.3 Formal Verification Methods and Theorem Proving

Formal verification method [11] is a system analysis technique that mainly involves
two steps; 1) developing a computer based mathematical model of the given sys-
tem, 2) verifying that the system’s model meets the rigorous specifications of the
intended behaviour, based on deductive reasoning. Since deductive reasoning involves
the use of the logical reasoning and evidence to reach a conclusion from one or more
premises that are considered to be true. Therefore, the usage of this method increases
the chances of catching the errors that are often ignored by the conventional simu-
lation based and numerical analysis techniques. The idea of doing formal verification
of a complex system is to identify its safety-critical components/parts that require an
exhaustive analysis. For example, in the case of Ariane 5 rocket, for the identification
the uncaught floating-point exception, it is sufficient to perform the formal analysis
of a component providing the floating-point arithmetic. Therefore, it may not require
formal verification of the whole system. Theorem proving [12] is one of the frequently

1https://github.com/libcg/bfp
2https://github.com/eruffaldi/cppPosit
3https://github.com/milankl/SoftPosit.jl
4https://www.intel.com/content/www/us/en/history/history-1994-annual-report.html
5https://www-users.math.umn.edu/∼arnold/disasters/ariane.html

3

https://github.com/libcg/bfp
https://github.com/eruffaldi/cppPosit
https://github.com/milankl/SoftPosit.jl
https://www.intel.com/content/www/us/en/history/history-1994-annual-report.html
https://www-users.math.umn.edu/~arnold/disasters/ariane.html

used formal verification techniques that involves constructing a mathematical model
of the given system based on logic and verifying its various properties by computer
programs involving automated reasoning. Here, the automated reasoning refers to the
computer-based deductive reasoning process that is based on the logical reasoning and
evidence. Thus, it ensures the soundness of the theorem proving technique. Theorem
proving can be interactive or automatic based on the choice of the underlying logic,
which can be propositional, first and higher-order logic. Higher-order logic provides
more expressiveness, which is important for analyzing the dynamics of physical sys-
tems. However, it requires user interaction for developing proofs within a theorem
prover. Many theorem provers (automatic and interactive), such as HOL Light [13, 14],
Coq [15, 16], ACL2 [17, 18] and PVS [19–21] have been used for the formal verification
of the floating point numbers and their arithmetic. Moreover, there is a research group
working on the verification of the different components/operations of the Intel proces-
sors, over the years. Some of the notable contributions are from Harrison [14, 22–26],
O’Leary [27], Narasimhan and Kaivola [28, 29], Slobodova [30] and Peter Tang [25]
who have been working in the Intel research group. Similarly, Rockwell Collins Inc.
and NASA have been successfully using formal methods for analyzing various aspects
of avionics [31–34]. However, none of these contributions cater for posit, which are
intended as drop-in replacement for floating-point numbers in computer systems.

1.4 Contributions of the Paper

In this paper, we provide a formalization of posits (Type III Unums) using HOL Light.
In particular, we formally model a posit format, which is composed of the sign, expo-
nent, regime and fraction bits. Moreover, we formalize a conversion of a posit to its
equivalent real number (decoding) and a real number to its equivalent posit repre-
sentation (encoding), which mainly uses the notion of the fraction and exponential
rounding. Finally, we formally verify various properties of the posits regarding these
conversions and the scaling factors of the regime, exponential and fraction bits using
HOL Light.

The novel contributions of the paper are:

• A higher-order logic formal model of a posit format, which includes the sign, expo-
nent, regime and fraction bits, using the HOL Light theorem prover. Posit has not
been formalized in any of the theorem prover before this paper.

• Higher-order logic formalization of the conversion of a posit to its equivalent real
number and a real number to its equivalent posit.

• Formal verification of properties regarding conversions of a real number to a posit
and a posit to a real number.

• Formal verification of properties regarding the scaling factors of the regime, expo-
nential and fraction bits of a posit using HOL Light. These properties regarding the
conversions and scaling factors ensure the correctness of our formalization of posit
presented in Section 4.1 of the paper. Moreover, they would be useful for performing
the arithmetic based on posit.

4

It is important to note here that our HOL Light code for the formal verification
of Unums is publicly available for download at [35] and thus can be used by other
researchers in the development of a formal library for Unum arithmetic.

2 Preliminaries

This section introduces the HOL Light theorem prover and posits.

2.1 HOL Light Theorem Prover

HOL Light [36] is a widely used interactive proof assistant for higher-order logic. The
HOL Light is written in the strongly-typed functional programming language ML [37].
Theorems are formalized as axioms or inferred from the already verified theorems avail-
able in theories by inference rules. A theorem consists of a finite set Ω of Boolean terms
(assumptions) and a Boolean term S as a conclusion. A new theorem is verified using
any previously proved theorems and the primitive inference rules or applying existing
axioms/inference rules in the HOL Light theorem proving environment that preserves
the soundness of this approach. Many mathematical concepts have been formalized
as HOL Light theories. A theory consists of a collection of valid HOL Light types,
constants, axioms, definitions, and theorems. The HOL Light theorem proving system
offers a wide range of theories, such as Boolean algebra, arithmetic, real numbers and
list theories, which are extensively used in our formalization. Various automatic proof
procedures [38] are also available in HOL Light to help and guide the user in conduct-
ing a proof effectively, efficiently and professionally. HOL Light has been used for the
formal verification of floating-point numbers, the arithmetic involving these numbers
and the associated algorithms. Some of the notable contributions are the formal ver-
ification of IA-64 division algorithms [23], square root algorithms [26], floating-point
trigonometric functions [23] and floating-point exponential functions [13], development
of a machine-checked theory of floating point arithmetic for the IA-64 architecture [14],
parameterized floating-point formalization [39] and hierarchical verification of the
IEEE-754 table-driven floating-point exponential function [40]. Similarly, some notable
contributions in PVS related to arithmetic systems include the formalization of IEEE-
854 floating-point standard [19], and the formal verification of IEEE rounding [41],
IEEE compliant subtractive division algorithms [42], VAMP floating point unit [20]
and IEEE floating point adder [43]. However, the HOL Light theorem prover sup-
ports automated reasoning of a larger set of computer arithmetic foundations that are
widely used for analyzing the continuous dynamics of the engineering and physical sys-
tems, which is one of the motivations for choosing it for our proposed formalization of
posit. This set of computer arithmetic foundational libraries will be extensively used
in making a comparison between formal analysis of posits and floating-point numbers,
which is one of our future directions. Moreover, the HOL Light theorem prover has the
smallest trusted core (i.e., approximately 400 lines of Ocaml code) amongst all other
higher-order-logic theorem prover and the underlying logic kernel has been verified in
the CakeML project [44, 45].

Some standard symbols, their meanings and their HOL Light representations used
in this paper are presented in Table 1.

5

Table 1: HOL Light Symbols

HOL
Light Symbols

Standard Symbols Meanings

∼ not Logical negation
<=> = Equality in Boolean domain
num N Natural numbers data type
real R Real data type
SUC n (n+ 1) Successor of natural number
&a N → R Casting from a Natural number a to a Real number a
@f Hilbert choice operator Returns f if it exists
k DIV m quotient Returns the quotient of the division of two real numbers

k and m
-- x −x Negative x

EL n l element Extracts nth element of List l
LAST l last element Last element of List l
[a; b; c] [a, b, c] List having elements as a, b and c

In order to facilitate the understanding of the paper, we presented majority of
the formalization of posits (Sections 4.1and 4.2) in simple Math notation. However,
for some of the HOL Light functions/symbols, we used the mathematical notations
presented in Table 2. Some of these notations may not correlate with the traditional
conventions. However, they have been considered only to facilitate the understanding
of the paper.

2.2 Posits (Unum-III)

Posits (Unum-III) [2], utilize a fixed number of bits as opposed to Type I Unums.
The precise number may be chosen for a particular implementation, ranging from two
bits up to many thousand bits. Posits may be simply implemented both in hardware
and software. Moreover, they employ the similar type of low-level circuit building
blocks that IEEE-754 floating-point numbers utilize for performing various arithmetic
operations, such as integer addition and multiplication, and those also cover less chip
area. Figure 1 presents a structure of an n-bit posit representation.

s r r r r e1e2 ees f1 f2 f3 f4 f5e3.

sign
bit

regime
bits

exponent
bits, if any

fraction
bits, if any

Fig. 1: Generic Posit Format for Finite, Nonzero Values

Posit representation consists of sign, regime, exponent and fraction bits. It is to be
highlighted that the only boundary is shown between the sign bit and the rest of the
bits since the other boundaries are flexible and depend on number of the regime bits.
The regime bits are a sequence of identical bits r (all 1s or 0s), which are terminated
by the opposite bit r for the case of non-zero exponent and fraction bits. In the case of

6

Table 2: Conventions used for HOL Light Functions

HOL Light Functions Mathematical
Conventions

Descriptions

/\ ∧ Logical and
\/ ∨ Logical or
∼(a = b) a ̸= b a is not equal to b
!x.t ∀x.t For all x : t
?x.t ∃x.t There exists x : t
\x.t λx.t Function that maps x to t(x)
==> ⇒ Implication
&a ȧ Casting from a Natural number a to a Real number a
int of num a â Casting from a Natural number a to an Integer a
num of int a ã Casting from an Integer a to a Natural number a
z pow n zn z raise to power Natural number n
x ipow y xy x raise to power integer y
a EXP b ab a raise to power b, where a and b are the natural

numbers
nb num nbn Casting from an Integer nb to a Natural number

using int of num

es num esn Casting from an integer es to a Natural number using
int of num

TL l l Tail of List l
CONS h t h::t Concatenates head h of a List with its tail t
HD l l Head of List l
APPEND l1 l2 l1 ++ l2 Append List l1 with List l2
MEM m l m ∈ l m is a member of List l
∼(MEM m l) m /∈ l m is not a member of List l
NIL l [] List l is empty
LENGTH l |l| Length of List l
real to posit check3 positreal Conversion of a real number to its corresponding

posit representation
add zero real realposit Conversion of a posit representation to its corre-

sponding real number
exponential rounding1 rounde Exponential rounding of a posit representation
exponential round check1 conde Condition on the exponent bits in case of exponential

rounding
scale factor e scalinge Scaling factor of the exponent bits
fraction rounding1 roundf Fractional rounding of a posit representation
fraction residue set1 residuef Condition on the residue value in case of fractional

rounding
scale factor f scalingf Scaling factor of the fraction bits
scale factor r scalingr Scaling factor of the regime bits

zero exponent and fraction bits, identical bits r in a regime are terminated by the end
of the posit. The sign bit serves the purpose of representing the positive and negative
numbers, i.e., it is 0 for the positive numbers and 1 for the negative numbers. Moreover,
we need to take the 2s complement for the negative numbers before decoding the
regime, exponent, and fraction bits.

To capture the idea of regime, Figure 2 provides some binary strings and their
corresponding interpretations as real numbers k determined by the run length of the
regime bits. Here, the symbol x in a bit string models the don’t care condition, i.e.,
the interpretation does not depend on the value of that bit.

The leading bits in all bit strings (Figure 2) are known as the regime of the number.
All binary strings start with some sequence of all 0 and all 1 bits in a row and terminate

7

Binary

Numerical meaning, k

0000 0001 001x 01xx 10xx 110x 1110 1111

-4 -3 -2 -1 0 1 2 3

Fig. 2: Regime Bit Illustration

by either the complementary bit or the end of the posit. The identical bits r of the
regime bits are color-coded in amber, whereas, the opposite bit r that terminates the
run, if any, is color-coded in brown. Assume m represents the number of identical bits
in a run. If the identical bits in a regime bit are 1, then k = m− 1, otherwise, it is k
= -m as given in Figure 2. The regime provides a scale factor of useedk, where useed

= 22
es

with es representing maximum exponent bits.
The next bits in a posit structure are the exponent e bits that are color-coded in

blue (Figure 1) and are considered as an unsigned integer. They model a scaling factor
of 2e. There can be a maximum of es exponent bits depending on the bits remaining
on the right side of the regime.

Any bits left after the regime and the exponent bits in a posit model the fraction
f and it is quite similar to the fraction 1.f in a floating-point number, with 1 as a
hidden bit. Moreover, there are no subnormal numbers with a hidden bit of 0 as they
are in floating-point numbers. The two exception values for posit are 0 and ±∞. When
all bits of a posit are zero, it represents the number 0. Whereas, the first bit as 1 and
the remaining bits as 0s represent the value ±∞.

Now, we illustrate the posit format (structure of a posit representation) described
above, using an example of decoding a 16-bit posit 0000110111011101 (Figure 3).

0 0 0 0 1 0 11

sign regime exponent fraction

1 1 0 1 1 1 0 1

+ 256-3 25x x (1 + 221/256)

Fig. 3: Decoding of a 16-bit Posit

We have picked es = 3, which causes the value represented by the regime bits to
provide a scaling factor between the negative and positive powers of 22

3

= 256. It is
important to note here that the standard 16-bit posit consist of es of size 1. However,
we have taken it as 3 for illustration purposes as shown in Figure 3. The sign bit of
0 asserts that it is a positive value/number. The regime bits consist of a run of three
0s that is terminated by a 1, making the power of useed equal to −3. The regime bits
present a scale factor of 256−3. The exponent bits, 101, represent the decimal number
5 as an unsigned binary integer, and introduce another scale factor 25. Finally, the
fraction bits 11011101 represent 221 as an unsigned binary integer, so the fraction
becomes 1 + 221

256 . The overall value decoded by a 16-bit posit is given as follows:

8

256−3 × 25 ×
(
1 +

221

256

)
= 477× 2−27 ≈ 3.55393× 10−6

3 Related Work

This section provides some related work regarding the formal verification of floating-
point numbers, and hardware and software implementations of posits.

3.1 Formal Verification of Floating-point Numbers

Many theorem provers, such as HOL Light, Coq, ACL2 and PVS have been used for
the formal verification of the floating point numbers and their arithmetic. Miner [19]
employed the PVS theorem prover for a formalization of ANSI/IEEE-854 standard
for Radix-Independent floating-point arithmetic. It mainly involves the mapping of
floating-point numbers to reals, mapping of reals to floating-point numbers, rounding
and various arithmetic operations, such as addition, subtraction, multiplication, divi-
sion and square root operations. Similarly, Berg et al. [20] developed a formal library
for IEEE rounding [41] in PVS while utilizing the formal definition of rounding pro-
vided by Miner. Moreover, the authors used it to formally verify the correctness of
a fully IEEE compliant floating-point unit used in the VAMP processor. Some more
notable contributions in PVS related to arithmetic systems include the formal verifi-
cation of IEEE compliant subtractive division algorithms [42], VAMP floating point
unit [20] and IEEE floating point adder [43].

Daumas et al. [15] provided a generic library to formally reason about the floating-
point numbers using the Coq theorem prover. The proposed formal library for the
floating-point arithmetic caters for an arbitrary floating-point format and an arbitrary
base, i.e., it accommodates both bases 2 and 10 for the IEEE-784 standard. Similarly,
Boldo et al. [16] proposed a framework for formally verifying the floating-point C pro-
grams. The authors extracted the verification conditions from C programs annotated
at the source code level that are discharged using Coq.

Harrison [13] provided the formal verification of an algorithm for computation of
the exponential function in IEEE-754 standard binary floating-point arithmetic using
the HOL Light theorem prover. Later, Harrison [14] generalized the formal library
of floating point arithmetic, by incorporating a wide variety of floating point for-
mats. Moreover, the authors used their proposed formalization for the verification
of the floating point arithmetic performed in Intel Itanium Architecture (IA)-64.
Similarly, Harrison [23] provided a number of formally verified algorithms for the eval-
uation of the transcendental functions, such as sine and cosine, for Intel IA-64 using
double-extended precision floating point arithmetic. Some more notable contributions
in HOL Light are the formal verification of IA-64 division algorithms [23], square
root algorithms [26], parameterized floating-point formalization [39] and hierarchical
verification of the IEEE-754 table-driven floating-point exponential function [40].

O’Leary et al. [46] proposed a hybrid verification approach, based on theorem
proving and model checking, for formally verifying the Intel’s FPU at the gate level.
Akbarpour et al. [47] presented a formalization of fixed-point arithmetic using the HOL

9

theorem prover. The authors formally modeled the fixed-point number system and pro-
vided specifications of various rounding modes, such as the directed and even rounding
modes. Moreover, they performed an error analysis for verifying rounding and various
arithmetic operations, such as addition, subtraction, division and multiplication.

Moore et al. [17] used the automated theorem prover ACL2 for formally verifying
the AMD-K5 floating-point division unit using ACL2. Similarly, Rusinoff [18] for-
mally verified the correctness of the floating point arithmetics, such as multiplication,
division, and square root instructions of the AMD-K7 microprocessor using ACL2.

Intel has been applying formal verification after the incident of the infamous Intel
processor bug. Indeed, there is a research group working on the verification of the
different components/operations of the Intel processors, over the years. Some of the
notable contributions are from Harrison [14, 22–26], O’Leary [27], Narasimhan and
Kaivola [28, 29], Slobodova [30] and Peter Tang [25] who have been working in the
Intel research group. Moreover, to the best of our knowledge, no bugs have been
reported regarding Intel processors in literature after the infamous Pentium IV bug.
The application of the formal verification could be one of the main reasons behind
this as well. For example, Bentley [10] describes the steps for the identification of the
bugs in the Pentium IV processor design prior to initial silicon. The author claims
that he identified over 100 logic bugs and about 20 of them were high quality bugs
that would not have been found using any other pre-silicon validation processes. Two
out of those 20 bugs were classic floating point data space problems. In particular,
the Floating ADD (FADD) instruction had a bug, where the 72-bit Floating Point
(FP) adder was setting the carryout bit to 1 for a specific combination of source
operands when there was no actual carryout. The author believes that if this error
had not been caught, it may have resulted into a bug similar to the Floating Divide
(FDIV) problem of the Pentium processor. More details about the validation of the
Intel Pentium 4 microprocessor by the Intel research group can be found at [10].
Moreover, some experiences of O’Leary at Intel about the verification of the floating
point arithmetic of the Intel Pentium 4 and Core i7 processors can be found at [48].
Similarly, many bugs have been found in different software over the past years. For
example, Gesellensetter et al. [49] found a bug in the scheduler of the GNU Compiler
Collection (GCC) compiler for a Very Long Instruction Word (VLIW) processor during
its verification using the Isabelle/HOL theorem prover. Johnson [50] provides some
natural history of bugs and discusses about the usage of the formal methods for
analyzing the software issues in space related applications. Similarly, Fitzgerald et
al. [51] discusses about the deployment of the formal verification method in industrial
applications. Moreover, Zhang et al. [52] survey the successful deployment of formal
methods in the industrial settings. Since posits are intended as drop-in replacement
for floating-point numbers in computer systems, their formal verification is of utmost
important to ensure the absence of any bugs before they are used in the processors.

Rockwell Collins Inc., a famous multinational company providing products and
services regarding the aerospace applications, and NASA have been successfully using
formal methods for analyzing various aspects of avionics. Whalen et al. [31] inte-
grated formal methods with the model-based development tools, i.e., Simulink and

10

SCADE Suite for the verification of the software during the design cycle for safety-
critical avionics applications. The authors developed a set of tools that translate the
Simulink models to formal models that can be used by the model checkers and theorem
provers for the automatic analysis of these models. Moreover, they formally analyzed
an Unmanned Aerial Vehicle (UAV) controller modeled in Simulink. During the analy-
sis of the controller, the authors formally verified over 60 properties and they identified
10 modelling errors and 2 requirement errors in the relatively mature models of the
system. Similarly, Miller et al. [32] performed the formal analysis of Flight Critical
Software (FCS) 5000, a new family of flight control systems developed by Rockwell
Collins Inc that is widely used in business and regional jet aircraft. Moreover, the
research team at NASA has worked on the formal verification of a flight critical soft-
ware [32], software safety analysis of a flight guidance system [33] and safety analysis
of software intensive systems [34]. More details about their research contributions in
this direction can be found at [53, 54].

Similarly, Barnat et al. [55] integrated the DIVINE model checker and HiLiTE,
a tool for requirements-based verification of aerospace system components developed
and used by Honeywell for the formal verification of the avionics Simulink models.
The authors used their proposed framework for formally analyzing the Voter Core
that is a sub-system of the common avionics triplex sensor voter. Cao et al. [56]
presented a framework for formally verifying the airborne software based on DO-333
and thus providing guidance in the integration of formal methods in the development
and analysis of the software. The authors used their proposed methodology for the
formal verification of Air Data Computer (ADC) software. Moreover, the authors
claim that they identified 16 errors during the verification of ADC software [56]. Some
more notable contributions regarding application of formal methods in avionics and
aerospace are [57–61]. However, none of these contributions cater for posit.

3.2 Hardware and Software Implementations of Posits

Posits have been implemented as an alternative to the floating-point number format
in hardware and software. Lehoczky et al. [7] presented the software and hardware
implementations of posits. The authors used C# programming language to implement
posits on the .NET platform. Moreover, they used Hastlayer, which is a tool for con-
verting .NET models to a language that can be implemented on FPGA, to develop
a hardware based implementation of posit. Similarly, the hardware architecture of
Unum adder/subtractor and multiplier has been designed and implemented in FPGAs.
Moreover, a Verilog HDL generator has been constructed for performing these arith-
metic operations [4–6, 62]. The software implementations of posits are also available
in C# [7], C6, C++7 and Julia8 programming languages. Moreover, it has been exper-
imentally shown that posits perform better than the fixed point number system, in
terms of accuracy and memory utilization, for both training and inferences of deep
convolutional neural networks [8, 9, 63]. However, none of the above-mentioned works

6https://github.com/libcg/bfp
7https://github.com/eruffaldi/cppPosit
8https://github.com/milankl/SoftPosit.jl

11

https://github.com/libcg/bfp
https://github.com/eruffaldi/cppPosit
https://github.com/milankl/SoftPosit.jl

(presented in Sections 3.1 and 3.2) provide the verification of Unums, which is the
main scope of the paper.

4 Results

4.1 Formalization of Posits

This section provides a higher-order-logic based formalization of posits using the HOL
Light theorem prover. It mainly involves a conversion from a posit representation
having a bit pattern to its corresponding real number and vice versa. Moreover, a
conversion from a posit representation to its corresponding real number is mainly based
on extracting the regime, exponent and fraction bits.

A posit format representation comprises four components, namely, sign, exponent,
regime and fraction bits. It is sufficient to define a computing environment for posits,
i.e., a posit configuration, using the total number of bits (nb) having an integer value
of greater than or equal to 2 and the number of exponent bits (es) with an integer
value of greater than or equal to 0 [64]. For example, for the case of nb = 2 and es =
0, the two bits comprising the posit are the sign and the regime bits, respectively. We
model a valid posit configuration as the following HOL Light function:
Definition 1: Valid Posit
⊢def ∀(nb:int) (es:int). is valid posit (nb,es) = (nb ≥ 2̂) ∧ (es ≥ 0̂)

The function is valid posit accepts a pair of integers (nb,es), describing the total
number of bits nb and the number of exponent bits es and returns a valid posit
configuration providing the constraints on these number of bits. We model a posit
configuration using new type definition feature of HOL Light as follows:
let posformat tpbij = new type definition ”posit” (”mk posit”, ” dest posit ”)
(prove (‘?(pst : int#int). is valid posit pst ‘, REWRITE TAC [PROOF TYPE]));;
where positmodels a new type by providing its name and bijection alongwith a theorem
asserting that bijection. The function mk posit projects a pair of integers to a posit
type and dest posit maps a posit to a pair of integers. Next, to model a valid length
of a posit, we first extract the elements of the pair (nb, es) in HOL Light as follows:
Definition 2: Extraction of the Elements of Pair (nb, es)
⊢def ∀(P:posit). nb P = FST (dest posit P)
⊢def ∀(P:posit). es P = SND (dest posit P)

⊢def ∀(P:posit). nbn P = (̃nb P)

⊢def ∀(P:posit). esn P = (̃es P)
The function nb accepts a posit configuration P and extracts the total numbers of

bits (nb) of a posit as an integer. Similarly, the function es extracts the numbers of
exponent bits (es) of a posit as an integer. The functions nbn and esn use num of int
to cast the integers nb and es to natural numbers.

Now, we model a valid posit length as follows:
Definition 3: Valid Posit Length
⊢def ∀(P:posit) (L:bool list). is valid posit length P L = (|L| = nbn P)

12

The function is valid posit length accepts a posit configuration P and a list L:bool
list, i.e., a posit representation, capturing the bit values of a posit format, and returns
a valid length of a posit.

Next, we model the two exception values for posits [64] in HOL Light as follows:
Definition 4: Exceptions (Zero and Infinity)
⊢def ∀(L:bool list). zero exception L = T /∈ L

⊢def ∀(L:bool list). inf exception L = L ∧ (T /∈ L)
The functions zero exception and inf exception present the exception values zero and

±∞, respectively. If all bits of a posit representation are 0, it represents an exception
value zero. Similarly, if the first bit is 1 and the rest of the bits are 0, it provides an
exception value ±∞.

Next, we model the seed value for the posit P, described in Section 2.2, as the
following HOL Light function:
Definition 5: Seed Value

⊢def ∀P. useed P = 2̇
2̇
(esn P)

Definition 6: Minimum and Maximum Positive Value of Posits

⊢def ∀(P:posit). maxpos P = (useed P)(nbn P - 2)

⊢def ∀(P:posit). minpos P =
1

maxpos P
The functions maxpos and minpos model the largest and smallest positive real

numbers (values) expressible as a posit P, respectively [2].
Definition 7: Check Extreme Values of Posit
⊢def ∀L. checkmax L = (F /∈ L)

The HOL Light function checkmax accepts a posit representation L, containing all
bit values of a posit format, and returns a Boolean value true (T) if all bits are equal
to 1 except the first (leading) bit, which can be either 0 or 1. For the case of first bit,
i.e., sign bit equal to 0, it captures the largest positive value, whereas, it models the
largest negative value for a sign bit 1.

Next, to calculate the scale factor of the regime bits, i.e., useedk, we first formalize
k (power of the variable useed) in HOL Light as the following recursive function:
Definition 8: Value of k for Scaling Factor of the Regime Bits
⊢def ∀(h:bool) (t:bool list). value of k [] = 0 ∧

value of k (h:t) = if t then (if [C1](t = (t)) ∧ [C2](1 < |t|)
then ((value of k t) + 1) else 0)

else (if [C3](t = (t)) ∧ [C4] (1 < |t|)
then ((value of k t) = 1) else =1)

The function value of k accepts a posit representation L: bool list and returns k
(power of the variable useed) for the scaling factor of the regime bits. If the identical
bits in a regime for a run are 1, then value of k is equal to run length - 1, otherwise it
is equal to the negation of run length. Here, run length corresponds to the variable m
presented in Section 2.2 and models the length of the regime bits.

Now, the scaling factor of the regime bits is formalized in HOL Light as follows:
Definition 9: Scaling Factor of the Regime Bits

⊢def ∀(P:posit) (L:bool list). scalingr P L = (useed P)(value of k L)

13

To convert a posit to its equivalent real number, we require the scaling factors of
the exponential and the fraction bits, which further need an extraction of these bits
from a given posit representation. Moreover, for both these extractions, we need to pick
elements (bit values) from a posit representation, which is formalized as the following
HOL Light function:
Definition 10: Pick Elements From a List
⊢def ∀(L:bool list) (l:num) (u:num).

pick elements L l u = pick elements simp L l ((u = l) + 1)
The function pick elements accepts a list L, a lower index l and an upper index u

and returns a list containing the elements of the input list from l to u indices. It uses
a recursive function pick elements simp to extract the required elements from a given
list.

Next, we extract the exponent bits of a posit representation as follows:
Definition 11: Extracting Exponent Bits
⊢def ∀(P:posit) (L:bool list). exp bits P L =
if [C1]((regime length L) + 1) < (nbn P) ∧ [C2](1 ≤ (ebn P)) then

(if [C3]((regime length L) + 1 + (ebn P)) ≤ |L| then
pick elements L ((regime length L) + 1) ((regime length L) + (ebn P))

else pick elements L ((regime length L) + 1) (|L| = 1))
else []
The function exp bits accepts a posit configuration P and a posit representation L

and returns the exponent bits of the posit. Here, the function regime length provides
the length of the regime bits.

Now, the scaling factor of the exponent bits is formalized as the following HOL
Light function:
Definition 12: Scaling Factor of Exponent Bits

⊢def ∀(P:posit) (L:bool list). scalinge P L = 2̇BV n (exp bits P L) * (2ebn P - exp length P L)

where the function BV n provides a natural number representation of the bit values.
There can be a maximum of es exponent bits depending on the bit left on the right
side of the regime in a posit representation. Therefore, the function scalinge provides
a scale factor of the exponent bits by incorporating the scenario, where the exponent
bits exp bits e are less than es. Moreover, the exponent bits scales from 0 to 2es.

Next, we extract the fraction bits of a posit representation as follows:
Definition 13: Extracting Fraction Bits
⊢def ∀(P:posit) (L:bool list). fraction bits P L =

if [C]((regime length L) + (exp length P L) + 1 < (nbn P)) then
pick elements L ((regime length L) + (exp length P L) + 1) ((nbn P) = 1)

else []
The function fraction bits accepts a posit configuration P and a posit representation

L and returns the fraction bits of a posit representation, if any.
Now, we formalize the scaling factor of the fraction bits as the following HOL

Light function:
Definition 14: Scaling Factor of Fraction Bits

⊢def ∀(P:posit) (L:bool list). scalingf P L = 1̇ +
˙(BV n (fraction bits P L))

2̇(fraction length P L)

14

where the function fraction length provides the length of the fraction bits. The fraction
bits serves the same functionality as they do in the floating-point numbers.

Finally, we formalize a conversion of a posit to its equivalent real number as follows:
Definition 15: Posit to Real Number Conversion
⊢def ∀(P:posit) (L:bool list). posit to signed real P L =

if [C1] zero exception L then 0̇

else (if [C2] (checkmax L) then (if [C3] sign bit L then =

&1

maxpos P
else maxpos P)

else (if [C4] (sign bit L) then =(scalingr P L‘ * scalinge P L‘ * scalingf P L‘)
else (scalingr P L) * (scalinge P L) * (scalingf P L)))

where L‘ = (sign bit L)::(two complement L).
The function posit to signed real accepts a posit configuration P and a posit rep-

resentation L and returns a real value corresponding to the given posit. The first
conditional statement of the function posit to signed real (Condition C1) checks all bits
of a posit representation using a function add zero real. For the case of all bits equal
to zero, it returns a real number/value 0. Otherwise, the second conditional statement
(Condition C2) uses the function checkmax (Definition 7) to confirm if the given posit
representation provides a largest positive or a largest negative real value for the sign
bit values of 0 and 1, respectively. For the scenario when a posit representation does
not capture any largest positive or negative values, it returns the corresponding real
number, which can be any positive or negative value depending on the sign bit of
the given posit representation. For example, for a sign bit 1, it uses the notion of 2s
complement to represent a negative real number.

Now, we provide the formalization of the conversion function from a real number
to posit, which is mainly based on the notion of the exponential and the fractional
rounding. The approach for converting a real number to its corresponding posit repre-
sentation is quite similar to the method used for transforming any real number to float
in floating-point arithmetic. For the case of the floating-point numbers, the first step
involves checking for the exception values, which are only 0 and ±∞ for the case of
posits. If the number does not represent any extreme values, it is divided by 2 or mul-
tiplied by 2 until it is in the interval [1, 2), and thus determining the fraction bits for
the corresponding floating-point number. For the case of posits, the given real number
is, first, repeatedly divided or multiplied by useed until it is in the interval [1, useed).
Then, the non-negative exponent for the posit is determined by repeatedly divided by
2 until it is in the interval [1, 2). The fraction always consists of a leading 1 bit to the
left of the binary point and does not require handling any subnormal exception values
that have a 0 bit to the left of the binary point.
Definition 16: Negative Real Number (Sign Bit)
⊢def ∀(x:real). sign real x = (x < 0̇)

The function sign real accepts a real number x and returns true if it is negative.
First, we formalize the regime bits (regime field) for a posit corresponding to a real

number in HOL Light as follows:
Definition 17: Regime Bits (Regime Field)
⊢def ∀(x:real) (P:posit). regime bits x P =

15

if [C1](1̇ ≤ x) then (get regime ones x P ((nbn P) = 2))
else (get regime zeros x P ((nbn P) = 2))

⊢def ∀(x:real) (P:posit) (n:num).

get regime zeros x P 0 = if [C2](x = 0̇) then [F] else [T] ∧
get regime zeros x p (SUC n) = if [C3](1̇ ≤ x) then (T::[]) else

F::(get regime zeros (x * (useed P)) P n)
⊢def ∀(x:real) (P:posit) (n:num). get regime ones x P 0 = [T] ∧

get regime ones x P (SUC n) = if [C4](1̇ ≤ x < useed P) then T::(F::[]) else

T::
(
get regime ones

x

useed P
P n

)
The function regime bits accepts a real number x and a posit configuration P and

provides the regime bits of a posit representation corresponding to the given real
number x. It mainly asserts a condition on the value of x, i.e., if 1 ≤ x, then it uses
the function get regime ones to obtain identical regime bits 1 terminated with a 0. If
the condition on x is false, it uses the function get regime zeros to generate a sequence
of 0s in the regime field terminated by a 1.

Generally, three distinct cases arise during a conversion of a real number to its
corresponding posit, i.e., 1) the resultant posit consists of the regime, exponent and
fraction bits; 2) it has only the regime and the exponent bits (no fraction bits); 3) it has
only regime bits (no exponent and fraction bits). These cases depend on the fact if the
notion of rounding is involved in the conversion or not, i.e., if a real number is exactly
expressible as a posit using the number of bits mentioned in a posit configuration or
it requires more bits, where it is rounded to a nearest valid posit representation. The
notion of fractional rounding is used for the case when we need more fraction bits than
the number of bits left after the regime and the exponent bits in a posit representation,
to express the given real value as a posit. Whereas, the exponential rounding captures
the scenario, where the number of exponent bits e in a posit representation is less than
the value es given in a posit configuration P . Moreover, in both types of rounding, i.e.,
the fractional and the exponential, if the input real value is at the tie-breaking point,
it is rounded to the nearest even posit having the last bit equal to zero. The fractional
rounding is quite similar to that of the floating-point numbers. In fractional rounding,
the tie-breaking point is the arithmetic mean of the two choices (lower and upper
bounds) for the rounding and the posit is rounded to the nearest fraction. However,
in the case of the exponential rounding, the tie-breaking point is the geometric mean
of the two choices (lower and upper bounds). Moreover, in the case of a real number
not exactly expressible as a posit, i.e., the exponent bits are truncated and the real
value is either rounded above or rounded down to a valid posit representation given in
Equations (1) and (2) [65]. For example, for two posits 32 and 128, the tie-breaking
point is 64. Therefore, any value greater than 64 maps to 128 and a value less than
64 is rounded to 32.

e+ =
(⌊ e

2t

⌋
+ 1

)
2t (1)

e− =
⌊ e

2t

⌋
2t (2)

16

Similarly, the fractional rounding is based on the residue left after the computation
of the fraction bits and the tie-breaking point, which is 1

2 . If the residue is less than
1
2 , the corresponding posit is rounded down, otherwise it is rounded up.

Now, we formalize the exponential rounding in HOL Light as follows:
Definition 18: Exponential Rounding
⊢def ∀(x:real) (P:posit). rounde x P =

if [C1] ˜(exp residue x P) ∧ [C2] M = N then (exp posit tie x P)

else
(
if
(
[C3] exp residue x P ∧ [C4] (M = N)

)
∨ [C5] (M > N) then

(exp posit up x P) else (exp posit down x P)
)

where M = te rounded bits x P and N = 2te bits x P - 1.
The function rounde accepts a real number x and a posit configuration P and

returns the exponential rounding of the corresponding posit representation. It mainly
asserts a condition on the exponential residue exp residue (checks if there is any val-
ue/residue left after extracting the regime and exponent bits) and the exponent bits
te rounded bits (returns the value of the exponent bits) to be truncated. Moreover,
the function te bits provides the number of truncated bits. The HOL Light functions
exp posit up accepts a posit configuration P and a real number x, and returns a list
containing the regime bits and the binary representation of the value of the exponent
of the rounded up posit. Similarly, exp posit down provides a list by appending the
regime bits with the binary representation of the value of the exponent of the rounded
down posit. More details about the exponential rounding and these functions can be
found in a detailed technical report of our work [35].

Next, we model the fractional rounding as, if the residual value after computing
the regime exponent and fraction bits is greater than 1

2 , then it is rounded up and
it is rounded down for a residual value less than 1

2 . Moreover, if the residual value is
equal to 1

2 , then it is rounded to the nearest even posit. We model it using the function
roundf as follows:
Definition 19: Fractional Rounding
⊢def ∀(x:real) (P:posit). roundf x P =

if [C1] residuef x P = 0̇
then (regime bits x P)++((exp list x P)++(set fraction list x P))

else (if [C2] residuef x P =
1

2
then (frac posit tie x P)

else (if [C3] residuef x P >
1

2
then (frac posit up x P)

else (frac posit down x P)))
The function roundf accepts a real number x and a posit configuration P and returns

the fractional rounding of the corresponding posit representation. More details about
the formalization of the fractional rounding can be found in the technical report [35].
Definition 20: Minimum Positive Real Number in a Posit Representation
⊢def ∀(P:posit). minpos posit P = num BV f ((nbn P) = 1) (1)

The function minpos posit accepts a posit configuration P and returns a posit
representation of a minimum positive real number expressible in a posit.

Similarly, the function maxpos posit captures a posit representation of a maximum
(largest) positive real number expressible in a posit.

17

Definition 21: Maximum Positive Real Number in a Posit Representation
⊢def ∀(P:posit). maxpos posit P = num BV f ((nbn P) = 1) (2(nbn P)−1

= 1)
Finally, we use Definitions 16 - 21 to formalize the conversion of a real number to

its corresponding posit representation as the following HOL Light function:
Definition 22: Real to Posit Conversion
⊢def ∀(x:real) (P:posit). positreal x P =

if ([C1] x = 0̇ ∨ [C2] |x| ≥ maxpos P ∨ [C3] |x| ≤ minpos P) then

(if [C4] x = 0̇ then [F]++(regime bits x P)
else
(if [C5] |x| ≥ maxpos P then (sign real x) ::(if [C6] sign real x then

two complement A else A)
else (sign real x) ::(if [C7] sign real x then two complement B else B)))

else

(if [C8] x > 0̇ then (if [C9] conde x P then [F]++H else [F]++K)
else (if [C10] (conde |x| P) then [T]++(two complement M) else

[T]++(two complement N)))
where A = maxpos posit P, B = minpos posit P, H = rounde x P,

K = roundf x P, M = rounde |x| P, N = roundf |x| P.
The function positreal accepts a real number x and a posit configuration P and

returns its equivalent posit representation. The satisfaction of the first conditional
statement (Conditions C1 − C7) provides the posit representations for zero, minimum
and maximum posits. Whereas, the satisfaction of the second conditional statement
(Conditions C8 − C10) provides other posits corresponding to any positive or negative
real numbers using the notions of the exponential and the fractional rounding. More-
over, for the case of the negative real numbers, it provides the 2s complement of the
corresponding posit representation.

We use our higher-order-logic based formalization of posits, a conversion from a
posit to its corresponding real number and a real number to its corresponding posit,
presented in this section, to formally verify various properties providing the correctness
of these conversions and the scaling factors of various bits, such as regime, exponential
and the fraction bits in Section 4.2 of the paper.

4.2 Formal Verification of Posits

In this section, we present the formal verification of various properties of posits regard-
ing the conversions and the scaling factors of the regime, exponential and the fraction
bits using HOL Light. The verification of these properties not only ensures the correct-
ness of our formal definitions presented in Section 4.1 but they are also quite vital for
performing various arithmetic operations based on posits.

We formally verify various properties regarding bounds on scaling factors of the
exponent, fraction and regime bits and are given in Table 3. For example, Theorem 4
provides an upper bound of 22

es−1 on the scaling factor of the exponent bits. Similarly,
Theorem 7 ensures that the scaling factor of the fraction bits is equal to 1, which
indicates that no fraction bits are left after the exponential rounding. More details
about the verification of these theorems can be found in the technical report [35].

18

Table 3: Formally Verified Properties regarding Scaling Factors of Various Bits

Theorem 1: Positive Value of k

⊢thm ∀(L:bool list). [A] (L) ⇒ (value of k L) ≥ 0

Theorem 2: Minimum Number of Bits of a Posit

⊢thm ∀(P:posit). 2 ≤ nbn P

Theorem 3: Upper Bound on Length of the Exponent Bits

⊢thm ∀(P:posit) (L:bool list). [A] is valid posit length P L ⇒ exp length P L ≤ ebn P

Theorem 4: Upper Bound on Scaling Factor of the Exponent Bits

⊢thm ∀(P:posit) (L:bool list). [A] is valid posit length P L ⇒ scalinge P L ≤ ˙(
2(2

nbn P- 1)
)

Theorem 5: Lower Bound on Scaling Factor of the Exponent Bits

⊢thm ∀(P:posit) (L:bool list). [A] is valid posit length P L ⇒ 0̇ < scalinge P L

Theorem 6: Upper Bound on Scaling Factor of the Fraction Bits

⊢thm ∀(P:posit) (L:bool list). [A] is valid posit length P L ⇒ scalingf P L < 2̇

Theorem 7: Scaling Factor of the Fraction Bits in Exponential Rounding

⊢thm ∀(P:posit) (L:bool list). [A1] (is valid posit length P L) ∧
[A2] exp length P L < ebn P ⇒ scalingf P L = 1̇

Theorem 8: Upper Bound on the Value of k

⊢thm ∀(L:bool list). [A1] ˜(checkmax L) ∧ [A2] (2 ≤ |L|) ⇒ value of k L < ˙(|L| − 2)

Theorem 9: Upper Bound on Scaling Factor of the Regime Bits

⊢thm ∀(P:posit) (L:bool list). [A1] is valid posit length P L ∧
[A2] is valid posit (dest posit P) ⇒ scalingr P L ≤ maxpos P

Theorem 10: Lower Bound on Scaling Factor of the Regime Bits

⊢thm ∀(P:posit) (L:bool list). [A] is valid posit length P L ⇒ 0̇ < scalingr P L

Theorem 11: Total Length of a Posit

⊢thm ∀(P:posit) (L:bool list). [A] is valid posit length P L
⇒ (exp length P L) + (regime length L) + (fraction length P L) + 1 = nbn P

Theorem 12: Upper Bound on a Real Value Obtained from its Equivalent Posit

⊢thm ∀(L:bool list) (P:posit). [A1] is valid posit (dest posit P) ∧
[A2] is valid posit length P L ∧ [A3] ˜(zero exception L) ∧ [A4] ˜(inf exception L)

⇒ posit to signed real P L ≤ maxpos P

Next, we verify some important properties about the conversion of a real number
to its equivalent posit (encoding) and a conversion of a posit to its equivalent real
number (decoding). Some of these properties are presented in Table 4. For example,
Theorem 14 ensures that every real number greater than the largest negative value

19

of its corresponding posit representation is mapped to -minpos. More details about
the verification of these properties alongside other formally verified properties can be
found in our technical report [35].

Table 4: Formally Verified Properties regarding Encoding and Decoding of Posits

Theorem 13: Encoding and Decoding of Zero

⊢thm ∀(P:posit) (L:bool list) (x:real). [A1] is valid posit (dest posit P) ∧
[A2] is valid posit length P (positreal x P) ∧ [A3] (x = 0̇)

⇒ realposit P (positreal x P) = x

Theorem 14: Encoding and Decoding of maxpos

⊢thm ∀(P:posit) (L:bool list) (x:real). [A1] is valid posit (dest posit P) ∧
[A2] is valid posit length P (positreal x P) ∧ [A3] ˜(zero exception (positreal x P)) ∧
[A4] x = maxpos P ⇒ realposit P (positreal x P) = x

Theorem 15: For Values Greater than the Largest Negative Number

⊢thm ∀(P:posit) (L:bool list) (x:real). [A1] is valid posit (dest posit P) ∧
[A2] is valid posit length P (positreal x P) ∧ [A3] ˜(zero exception (positreal x P)) ∧
[A4] ˜(inf exception (positreal x P)) ∧ [A5] (x < 0̇) ∧ [A6] (x ≥ =minpos P)

⇒ realposit P (positreal x P) = =minpos P

Theorem 16: Completely Encoded fraction

⊢thm ∀n x. [A1] fraction residue1 x n = &0 ⇒ x =
˙(BV n (fraction list x n))

(2̇|fraction list x n|)

Theorem 17: Decoding of Encoded Positive Real Numbers

⊢thm ∀(P:posit) (L:bool list) (x:real).
[A1] is valid posit (dest posit P) ∧ [A2] is valid posit length P (positreal x P) ∧
[A3] ˜(zero exception (positreal x P)) ∧ [A4] ˜(inf exception (positreal x P)) ∧
[A5] (x > 0̇) ∧ [A6] (minpos P < |x| < maxpos P) ∧
[A7] ˜(checkmax (positreal x P)) ∧ [A8] ˜(conde x P) ∧ [A9] residuef x P = 0̇ ∧
[A10] regime length ([F]++((regime bits x P)++((exp list x P)++

(set fraction list x P)))) = | regime bits x P| ∧
[A11] value of k (positreal x P) = value of k ([sign real x]++(regime bits x P))

⇒ realposit P (positreal x P) = x

The formal verification of the above theorems ensures the correctness of our for-
malization of posits, presented in Section 4.1, i.e., the formal model of posits and
conversion from a real number to posit and vice versa, and its various parameters,
such as the scaling factors of the regime, exponential and the fraction bits using HOL
Light. Moreover, these formalization results, presented in Sections 4.1 and 4.2, can
be further used for the verification of various arithmetic operations, such as addition,
subtraction, multiplication and division operators.

20

5 Discussion

The distinguished feature of the proposed formalization is that all the proved theorems
are of generic nature, i.e., all the functions and variables are universally quantified and
hence, can be specialized based on the requirement of the Unum arithmetics, like the
encoding or decoding of any particular Unums. Moreover, the inherent correctness of
the theorem proving approach ensures that all the necessary assumptions are explicitly
present with the respective theorem. The effort spent in verification of each theorem
is represented in the form of proof lines and the man-hours as shown in Table 5. The
man-hours are calculated based on two factors. The first factor includes the number
of lines of HOL Light code per hour by a person with an average expertise and the
second factor is the complexity of the proof. Moreover, there is no direct method to
access the complexity of the proof. We often consider three major factors to estimate
it. 1) The complexity of the mathematical results that are used in the analysis or
proof of a theorem. For example, a proof involving integrals will be more complex
than that involving matrices/vectors that are easy to handle.; 2) The expertise of a
researcher regarding a particular proof goal.; 3) How many lemmas that are directly
used in a proof of a theorem and are not available in a library. More lemmas to
prove, make a formal proof of a theorem more complex and vice versa. Therefore,
lines number of the proof script do not have a direct relationship with the man-
hours. For instance, the man-hours for the verification of Theorems 13 and 14 are
identical, while the proof lines for the former are less than that for the later. Moreover,
there are few inherent limitations of our proposed higher-order-logic theorem proving
approach. 1) Our proposed approach involves a lot of human interaction due to the
undecidable nature of higher-order-logic, i.e., the user is involved in the process of
formal verification along with the machine.; 2). Sometimes there is a significant gap
between the traditional mathematical proof and its formal proof. Therefore, we need
to identify the additional steps at our own that are required for developing a complete
formal proof. ; 3) We have identified all formally verified properties, presented in
Section 4.2, at our own to ensure the correctness of the formalization of posit provided
in Section 4.1 of the paper. Moreover, to the best of our knowledge, these properties
are not mentioned in the literature.

6 Conclusions

The Universal Number (Unum) is a number representation format that provides an
improved memory bandwidth and the power efficiency as compared to the floating-
point numbers [1]. As a first step towards the verification of the Unum arithmetic, this
paper provides a formalization of posit, which is a Type III Unums. In particular, we
provide a conversion of a real number to its corresponding posit representation and a
posit representation to its corresponding real number. We also verify some important
properties regarding scaling factors of its regime, exponential and fraction bits using
HOL Light that are widely used to perform various arithmetic operations involving
posits. In future, we plan to verify different arithmetic operations [65], such as addition,
subtraction, multiplication, exponential and division for posits. We also plan to utilize
our proposed formalization to formally verify the computations of the transcendental

21

Table 5: Verification Details for Each Theorem
Formalized Theorems Proof Lines Man-Hours Complexity of Proofs
Theorem 1 (Table 3) 8 1 Easy
Theorem 2 (Table 3) 20 1 Easy
Theorem 3 (Table 3) 15 1 Easy
Theorem 4 (Table 3) 40 7 Easy
Theorem 5 (Table 3) 3 0.5 Easy
Theorem 6 (Table 3) 20 2 Easy
Theorem 7 (Table 3) 26 1 Easy
Theorem 8 (Table 3) 69 19 Medium
Theorem 9 (Table 3) 64 17 Medium
Theorem 10 (Table 3) 7 0.5 Easy
Theorem 11 (Table 3) 39 2 Easy
Theorem 12 (Table 3) 300 84 Hard
Theorem 13 (Table 4) 10 2 Easy
Theorem 14 (Table 4) 25 2 Easy
Theorem 15 (Table 4) 96 27 Hard
Theorem 16 (Table 4) 45 36 Hard
Theorem 17 (Table 4) 80 46 Hard

functions, such as sine, cosine and exponential functions [1]. Another future direction
is to make a comparison of the formal libraries of the floating-point number and posits.

Data Availability Statement

The HOL Light code for our proposed formalization of posits is available at https:
//github.com/adrashid/positsverification and it has been added as reference 35 of the paper.

References

[1] Gustafson, J.L.: The End of Error: Unum Computing. CRC Press, ??? (2017)

[2] Gustafson, J.L., Yonemoto, I.T.: Beating floating point at its own game: Posit
Arithmetic. Supercomputing Frontiers and Innovations 4(2), 71–86 (2017)

[3] Esmaeel, A.A., Abed, S., Mohd, B.J., Fairouz, A.A., et al.: POSIT vs. Floating
Point in Implementing IIR Notch Filter by Enhancing Radix-4 Modified Booth
Multiplier. Electronics 11(1), 163 (2022)

[4] Jaiswal, M.K., So, H.K.-H.: Architecture Generator for Type-3 Unum Posit
Adder/Subtractor. In: Circuits and Systems, pp. 1–5 (2018). IEEE

[5] Podobas, A., Matsuoka, S.: Hardware Implementation of POSITs and their Appli-
cation in FPGAs. In: Parallel and Distributed Processing, pp. 138–145 (2018).
IEEE

[6] Jaiswal, M.K., So, H.K.-H.: Universal Number Posit Arithmetic Generator on
FPGA. In: Design, Automation & Test in Europe, pp. 1159–1162 (2018). IEEE

[7] Lehóczky, Z., Retzler, A., Tóth, R., Szabó, Á., Farkas, B., Somogyi, K.: High-level.

22

https://github.com/adrashid/posits verification
https://github.com/adrashid/posits verification

NET Software Implementations of Unum Type I and Posit with Simultaneous
FPGA Implementation using Hastlayer. In: Next Generation Arithmetic, pp. 1–7
(2018)

[8] Langroudi, H.F., Karia, V., Gustafson, J.L., Kudithipudi, D.: Adaptive Posit:
Parameter Aware Numerical Format for Deep Learning Inference on the Edge.
In: Computer Vision and Pattern Recognition, pp. 726–727 (2020)

[9] Murillo, R., Del Barrio, A.A., Botella, G.: Deep PeNSieve: A Deep Learning
Framework based on the Posit Number System. Digital Signal Processing, 102762
(2020)

[10] Bentley, B.: Validating the Intel Pentium 4 Microprocessor. In: Design Automa-
tion, pp. 244–248 (2001)

[11] Clarke, E.M., Wing, J.M.: Formal Methods: State of the Art and Future
Directions. ACM Computing Surveys 28(4), 626–643 (1996)

[12] Harrison, J.: Handbook of Practical Logic and Automated Reasoning. Cambridge
University Press, ??? (2009)

[13] Harrison, J.: Floating Point Verification in HOL Light: the Exponential Func-
tion. In: Algebraic Methodology and Software Technology, pp. 246–260 (1997).
Springer

[14] Harrison, J.: A Machine-checked Theory of Floating Point Arithmetic. In:
Theorem Proving in Higher Order Logics, pp. 113–130 (1999). Springer

[15] Daumas, M., Rideau, L., Théry, L.: A Generic Library for Floating-point Numbers
and its Application to Exact Computing. In: Theorem Proving in Higher Order
Logics. LNCS, vol. 2152, pp. 169–184 (2001). Springer

[16] Boldo, S., Filliâtre, J.-C.: Formal verification of floating-point programs. In:
Symposium on Computer Arithmetic, pp. 187–194 (2007). IEEE

[17] Moore, J.S., Lynch, T.W., Kaufmann, M.: A Mechanically Checked Proof of
the AMD5K86TM Floating-point Division Program. IEEE Transactions on
Computers (9), 913–926 (1998)

[18] Russinoff, D.: A Mechanically Checked Proof of IEEE Compliance of a
Register-transfer-level Specification of the AMD-K7 Floating-point Multiplica-
tion, Division, and Square Root Instructions. LMS Journal of Computation and
Mathematics 1, 148–200 (1998)

[19] Miner, P.S.: Defining the IEEE-854 Floating-Point Standard in PVS (1995)

[20] Berg, C., Jacobi, C.: Formal Verification of the VAMP Floating-point Unit. In:
Correct Hardware Design and Verification Methods. LNCS, vol. 2144, pp. 325–339

23

(2001). Springer

[21] Jacobi, C.: Formal Verification of a Fully IEEE Compliant Floating Point Unit
(2002)

[22] Cornea, M., Harrison, J., Anderson, C., Tang, P.T.P., Schneider, E., Gvozdev, E.:
A Software Implementation of the IEEE 754R Decimal Floating-point Arithmetic
using the Binary Encoding Format. Transactions on Computers 58(2), 148–162
(2008)

[23] Harrison, J.: Formal Verification of Floating Point Trigonometric Functions. In:
Formal Methods in Computer-aided Design, pp. 254–270 (2000). Springer

[24] Harrison, J.: Floating-point Verification using Theorem Proving. In: Formal Meth-
ods for the Design of Computer, Communication and Software Systems, pp.
211–242 (2006). Springer

[25] Harrison, J., Kubaska, T., Story, S., et al.: The Computation of Transcenden-
tal Functions on the IA-64 Architecture. In: Intel Technology Journal (1999).
Citeseer

[26] Harrison, J.: Formal Verification of Square Root Algorithms. Formal Methods in
System Design 22(2), 143–153 (2003)

[27] Jones, R.B., O’Leary, J.W., Seger, C.-J., Aagaard, M.D., Melham, T.F.: Practical
Formal Verification in Microprocessor Design. Design & Test of Computers 18(4),
16–25 (2001)

[28] Narasimhan, N., Kaivola, R.: Formal Verification of the Pentium® 4 Floating-
Point Multiplier. In: Design, Automation & Test in Europe, pp. 1–8 (2002). IEEE

[29] Kaivola, R.: Intel CoreTM i7 Processor Execution Engine Validation in a Func-
tional Language Based Formal Framework. In: Practical Aspects of Declarative
Languages, pp. 414–429 (2011). Springer

[30] Slobodová, A.: Formal Verification of Hardware Support for Advanced Encryption
Standard. In: Formal Methods in Computer-Aided Design, pp. 1–4 (2008). IEEE

[31] Whalen, M., Cofer, D., Miller, S., Krogh, B.H., Storm, W.: Integration of Formal
Analysis into a Model-based Software Development Process. In: Formal Methods
for Industrial Critical Systems, pp. 68–84 (2007). Springer

[32] Miller, S., Anderson, E., Wagner, L., Whalen, M., Heimdahl, M.: Formal Verifi-
cation of Flight Critical Software. In: AIAA Guidance, Navigation, and Control
Conference and Exhibit, p. 6431 (2005)

[33] Tribble, A.C., Lempia, D., Miller, S.P.: Software Safety Analysis of a Flight Guid-
ance System. In: Digital Avionics Systems Conference, vol. 2, pp. 13–1131 (2002).

24

IEEE

[34] Tribble, A., Miller, S.: Safety Analysis of Software Intensive Systems. IEEE
Aerospace and Electronic Systems 19(10), 21–26 (2004)

[35] https://github.com/adrashid/posits verification

[36] Harrison, J.: HOL Light: A Tutorial Introduction. In: Srivas, M., Camilleri, A.
(eds.) Proceedings of the First International Conference on Formal Methods in
Computer-Aided Design (FMCAD’96). Lecture Notes in Computer Science, vol.
1166, pp. 265–269. Springer, ??? (1996)

[37] Paulson, L.: ML for the Working Programmer. Cambridge University Press, ???
(1996)

[38] Harrison, J.: Formalized Mathematics. Technical Report 36, Turku Centre for
Computer Science, Finland (1996)

[39] Jacobsen, C., Solovyev, A., Gopalakrishnan, G.: A Parameterized Floating-point
Formalizaton in HOL Light. Electronic Notes in Theoretical Computer Science
317, 101–107 (2015)

[40] Abdel-Hamid, A.T.: A hierarchical Verification of the IEEE-754 Table-driven
Floating-point Exponential Function using HOL. PhD thesis, Concordia Univer-
sity (2001)

[41] Müller, S.M., Paul, W.J.: Computer Architecture: Complexity and Correctness.
Springer, ??? (2013)

[42] Miner, P.S., Leathrum, J.F.: Verification of IEEE Compliant Subtractive Division
Algorithms. In: Formal Methods in Computer-Aided Design. LNCS, vol. 1166,
pp. 64–78 (1996). Springer

[43] Berg, C.: Formal Verification of an IEEE Floating Point Adder. Master’s Thesis,
Saarland University, Germany (2001)

[44] Harrison, J.: Towards self-verification of HOL Light. In: International Joint
Conference on Automated Reasoning, pp. 177–191 (2006). Springer

[45] Kumar, R.: Self-compilation and Self-verification. Technical report, University of
Cambridge, Computer Laboratory (2016)

[46] O’Leary, J., Zhao, X., Gerth, R., Seger, C.-J.H.: Formally Verifying IEEE
Compliance of Floating-point Hardware. Intel Technology Journal 3(1), 1–14
(1999)

[47] Akbarpour, B., Dekdouk, A., Tahar, S.: Formalization of Cadence SPW Fixed-
Point Arithmetic in HOL. In: Integrated Formal Methods. LNCS, vol. 2335, pp.

25

https://github.com/adrashid/posits_verification

185–204 (2002). Springer

[48] O’Leary, J.: Theorem Proving in Intel Hardware Design (2009)

[49] Gesellensetter, L., Glesner, S., Salecker, E.: Formal Verification with
Isabelle/HOL in Practice: Finding a Bug in the GCC Scheduler. In: Formal
Methods for Industrial Critical Systems, pp. 85–100 (2007). Springer

[50] Johnson, C.W.: The Natural History of Bugs: Using Formal Methods to Analyse
Software Related Failures in Space Missions. In: Formal Methods, pp. 9–25 (2005).
Springer

[51] Fitzgerald, J., Bicarregui, J., Larsen, P.G., Woodcock, J.: Industrial Deployment
of Formal Methods: Trends and Challenges. In: Industrial Deployment of System
Engineering Methods, pp. 123–143. Springer, ??? (2013)

[52] Zhang, F., Niu, W., et al.: A Survey on Formal Specification and Verification of
System-level Achievements in Industrial Circles. Academic Journal of Computing
& Information Science 2(1) (2019)

[53] https://shemesh.larc.nasa.gov/fm/fm-main-research.html

[54] https://shemesh.larc.nasa.gov/fm/fm-collins-intro.html

[55] Barnat, J., Beran, J., Brim, L., Kratochv́ıla, T., Ročkai, P.: Tool Chain to Support
Automated Formal Verification of Avionics Simulink Designs. In: Formal Methods
for Industrial Critical Systems, pp. 78–92 (2012). Springer

[56] Cao, Z., Lv, W., Huang, Y., Shi, J., Li, Q.: Formal Analysis and Verification of
Airborne Software Based on DO-333. Electronics 9(2), 327 (2020)

[57] Nellen, J., Rambow, T., Waez, M.T.B., Ábrahám, E., Katoen, J.-P.: Formal
Verification of Automotive Simulink Controller Models: Empirical Technical Chal-
lenges, Evaluation and Recommendations. In: Formal Methods, pp. 382–398
(2018). Springer

[58] Xu, H., Wang, P.: Real-time Reliability Verification for UAV Flight Control
System Supporting Airworthiness Certification. PloS ONE 11(12), 0167168
(2016)

[59] Cofer, D.: Formal Methods in the Aerospace Industry: Follow the Money. In:
Formal Engineering Methods, pp. 2–3 (2012). Springer

[60] Chaves, L., Bessa, I.V., Ismail, H., Santos Frutuoso, A.B., Cordeiro, L.,
Lima Filho, E.B.: DSVerifier-aided Verification Applied to Attitude Control Soft-
ware in Unmanned Aerial Vehicles. Transactions on Reliability 67(4), 1420–1441
(2018)

26

https://shemesh.larc.nasa.gov/fm/fm-main-research.html
https://shemesh.larc.nasa.gov/fm/fm-collins-intro.html

[61] Wiels, V., Delmas, R., Doose, D., Garoche, P.-L., Cazin, J., Durrieu, G.: Formal
Verification of Critical Aerospace Software. AerospaceLab (4), 1 (2012)

[62] Jaiswal, M.K., So, H.K.-H.: Pacogen: A Hardware Posit Arithmetic Core Gener-
ator. ACCESS 7, 74586–74601 (2019)

[63] Langroudi, S.H.F., Pandit, T., Kudithipudi, D.: Deep Learning Inference on
Embedded Devices: Fixed-point Vs Posit. In: Energy Efficient Machine Learning
and Cognitive Computing for Embedded Applications, pp. 19–23 (2018). IEEE

[64] Gustafson, J.L.: Posit Arithmetic. Mathematica Notebook Describing the Posit
Number System 30 (2017)

[65] Chung, S.Y.: Provably Correct Posit Arithmetic with Fixed-point Big Integer. In:
Next Generation Arithmetic, pp. 1–10 (2018)

27

	Introduction
	Universal Numbers and their Applications
	State-of-the-art
	Formal Verification Methods and Theorem Proving
	Contributions of the Paper

	Preliminaries
	HOL Light Theorem Prover
	Posits (Unum-III)

	Related Work
	Formal Verification of Floating-point Numbers
	Hardware and Software Implementations of Posits

	Results
	Formalization of Posits
	Formal Verification of Posits

	Discussion
	Conclusions

