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ABSTRACT
Due to the continuous reduction in the transistors sizing ruled by the Moore’s law, digital devices have
become smaller, and more complex resulting in an enormous rise in the delay variations. Therefore,
there is a dire need of precise and rigorous timing analysis to overcome anomalies during the timing
analysis. Timings of digital circuits can be verified using various simulation or static timing analysis
(STA) based tools but they provide estimated results due to their inherent in-exhaustive nature or report
timing paths corresponding to non-existent functional paths, respectively. Formal verification provides
complete and sound analysis results and has widely been used for the functional verification of digital
circuits but its application in the timing analysis domain is somewhat limited. We present a generic
framework to perform formal timing analysis of digital circuits with the help of Uppaal model-checker.
The given digital circuit along with its timing parameters in the form of state transition diagram
are modeled using timed automata in the Uppaal model checker. Timing delays are calculated from
corresponding technology parameters, and Quartus Prime Pro is used to obtain the information about
the circuits’ paths. In order to make the analysis scalable, we also propose a novel path partitioning
technique and compare its results with complete path analysis and traditional STA. The formal model
is verified with the help of properties to assess the timing characteristics, like time period of a clock,
critical path, and propagation delay of the considered circuit. Modeling and verification of ISCAS-85
and ISCAS-89 benchmark circuits is presented for illustration purposes.

1. Introduction
Due to the increased complexity in integrated circuits,

modeling and verification of both functional and non-functional
characteristics of digital circuits have become very difficult.
In timing analysis, our objective is to determine the delay
of each component of a circuit based on the underlying
physical technology while considering the on-chip physical
[5] variations, like gate-oxide thickness, doping concentra-
tion, and channel length. These physical variations result in
variations in the electrical parameters, such as gate capac-
itance, resistance and capacitance of wires, and threshold
voltage which in turn result in an uncertain delay for digital
components. The overall delay of a circuit is calculated by
simply accumulating delays of all of its components using
several techniques, like static timing analysis [31] or gate
level simulations [39]. Static timing analysis (STA) [12]
is more scalable, compared to gate-level simulation, and
thus a more widely adopted technique since 1990s. The
STA is carried out statically, i.e., the analysis results do not
depend upon input data values. The purpose of STA is to
verify if the given design can operate safely at the given
speed without any timing violations. However, complex
digital circuits cannot be exhaustively verified by STA due
to the large number of associated physical variations and
thus the analysis is based on either considering the worst
case scenario or a sampled subset of all the possibilities.
This kind of a worst case or an incomplete analysis can
produce a non-optimal design in terms of timings, which is
a very undesirable feature given the safety, performance and

∗Corresponding authors.
Email addresses: qain.msee15seecs@seecs.nust.edu.pk (Q. Ain);

osman.hasan@seecs.nust.edu.pk (O. Hasan)

security-critical nature of domains in which digital designs
are used.
Recently, very powerful and performance-efficient open-
source STA tools have been developed, including iTimerC
[32], and OpenTimer [28, 29]. An efficient Graph-based
timing propagation (GBP) framework is proposed [21, 27]
by exploring both structural and pipeline parallelisms in the
STA task graph. These tools can analyze circuits with a
considerably large number of gates efficiently but these STA
based techniques do not consider the functionality of the
circuits and the impact of all the possible input combinations
on the delays.
Formal verification [24] is known to overcome the limita-
tions of simulation based approaches. It has been broadly
advocated for the digital circuits’ functional verification
[9, 15, 30, 40]. Formal verification mainly involves con-
structing a formal model and verifying its desired behavior
based on its corresponding formal specifications. One of
the most frequently used techniques of formal verification
is a model checking. It provides automatic verification and
can generate a counter example in case if a property is not
successfully verified. In model checking, state transition
diagram is mainly used for modeling the given system and
this state space is explored exhaustively to check if a desired
property holds for the given model.

In recent years, formal timing verification of integrated
circuits got considerable attention as timing analysis of digi-
tal circuits plays a critical role in the overall performance of
a device. The timing behavior of combinational circuits has
been analyzed using the model-checker Open-Kronos [38].
Small combinational circuits with several gates have been
verified using the timed automata (TA) along with some
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abstraction techniques. Stabilization time of some basic cir-
cuits has been analyzed using the timed automata. In [13],
a digital circuit is divided into smaller sub-circuits using
the reachability graphs, and modeled and verified using the
timed automata. A major drawback in this technique is that
it does not use the actual delay values for the logic gates
and instead it uses constant delays, e.g., the inverter delay
is considered to be 0, and thus the technology parameters
are fully ignored in this approach. Formal verification of
both combinational and sequential circuits is performed in
[10]. Circuit behavior is modeled in two different views i.e.,
functional view, and a timed view. The functional view is
associated with a synthesizable hardware description lan-
guage VHDL, while the timed view is described in terms
of propagational delays of circuit’s components, which is
obtained from SPICE simulations. These two views are
modeled in timed automata to verify response time, stability
period, and the event delays. Linear constraints are formally
derived to analyze the performance of SPSMALL memory
in [20]. These constraints are derived using the parametric
timed automata [14] and the HYTECH tool [26] to guarantee
the correct behavior of a circuit. The input signal propagates
to the output port after passing through a certain number
of logic components. Each logic component has delays at
rising and falling edges. Model based on parametric timed
automata has been developed for the verification of SPS-
MALLmemory architecture [20]. In this model, set of linear
constraints have been derived to ensure the correct response
time of a memory architecture. Similarly, timed circuits are
formally verified with the unspecified symbolic delays in
[22]. Symbolic delays of each event is defined in an interval
[di, Di] where di represents the minimum delay value and
Di symbolizes the maximum delay value. This technique
used an algorithmic approach for linear constraints in timed
transition system (TTS) to verify timed circuits but this
approach is limited to verification of circuits with upto a
maximum of 20 symbolic delays and therefore is suitable
for smaller size circuits only.

Digital circuits have also been formally verified with
respect to time for numerous other applications e.g., fault
detection in the circuits [42], and detection of Hardware
Trojans (HT) [2]. Propagational delays are modeled in an
interval �[�min, �max] for verification of synchronous sequen-tial circuits in [42] where �[�min] represents the minimum
delay value and �[�max] represents the maximum delay value
in a considered circuit. Circuits are first modeled as a timed
automata (TA), faults are then injected in circuits and veri-
fied against certain set of properties. Counter examples ob-
tained after verification play a critical role in fault detection.
Similarly, combinational circuits has been formally verified
in [2] and this approach has been used for Hardware Trojan
detection using the gate-level side channel parameters, like
power and delay. Intrusion is injected in a given circuit in
terms of logic gates. Generation of counter examples from
the model-checker provide the basis of intruded paths. This
approach is limited to the verification of combinational cir-
cuits only. Furthermore, the paths of combinational circuits

are analyzed manually for the verification of propagational
delay. Formal verification of integrated circuits (ICs) is per-
formed in [3] for analyzing vulnerabilities in ICs using gate-
level side channel parameters. Combinational circuits are
modeled with the help of nuXmv model-checker to evaluate
the safe range of propagation delay, switching power and
leakage power. In case of vulnerabilities, the values of power
or the delay exceeds from the given range, and thus the
counter example is generated during LTL property verifi-
cation. This technique is used to verify the combinational
circuits only. Moreover, with the increase in the circuit
size, intrusion detection time increases exponentially. That
is why, this technique is limited to the verification of circuits
with a limited number of gates i.e., the maximum circuit
that was verified was composed of 1669 gates. A model
checking based methodology, based on nuXmv [18], for
security vulnerability analysis is presented in [4]. In this
approach, safe bounds of power and delay are calculated
using Matlab. 3-Sigma process variation is also modeled
considering threshold voltage Vtℎ, thickness oxide tox, andeffective channel length L. This technique has scalability
issues and is applicable to small circuits only i.e., the largest
verified circuit had 166 gates, and it performs verification of
the combinational circuits only. This approach models gate-
level side channel parameters using nuXmv model-checker.
In [41] circuit is modeled as a network of stochastic hybrid
timed automata using statistical model checking approach.
This technique generates fault coverage against the modeled
circuits. By carefully analyzing the counter examples, it op-
timizes the inputs vectors in order to minimize the deviation
from the desired timing behavior. This approach modeled
both the combinational and sequential circuits but all the
timing analysis is based on modeling of delay as a random
variable instead of realistic value. Accurate computation
of circuit delay using timed automata is presented in [1].
Circuits aremodeled as network of timed automata and delay
is computed by performing a symbolic traversal of the state
space. This technique can only verify small size combina-
tional circuits i.e, upto 16 bit carry skip adder. Accurate
and approximate logical multipliers are formally modeled
using basic gates in the UPPAAL SMC model-checker and
their error rate is analyzed against different inputs in [34].
The approximate multiplier is more efficient in terms of area
and performance because it has less number of logic gates
than the accurate multiplier and hence it requires less states
for its modeling and verification. Similarly, model-checking
approach has been used to analyze the security of SoCs from
external threats in [25]. The state transition diagrams are
modeled using the gate-level netlists and verified against var-
ious properties by analyzing possible attacks from Trojans
in bus protocol and IPs. Both of these approaches utilize
model checking based formal verification of digital circuits
by formally modeling them at the gate level but they do not
focus on critical path analysis and delay computations of
logic circuits, which is the context of the current paper.
In this paper, we overcome the limitations of above men-
tioned approaches to propose a more accurate formal timing
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analysis technique. Digital circuits, comprising of both com-
binational and sequential parts, are formally verified using
the model-checker Uppaal in [7] and delay computation has
been achieved using the Elmore delay model [45]. Further-
more, rather than making the use of bi-bounded delays,
we proposed to perform the delay computations at each
possible input combination of each gate present in the digital
design. For example, delays are computed for all the four
possible transitions ΓDelay = [d00, d01, d10, d11] in case of a
two input logic gate where d00 symbolizes the delay value
when both inputs of a gate are 0. Similarly, delay values
against inputs 01, 10, 11 are represented as d01, d10, d11,respectively. Moreover, instead of exploring the timing paths
manually within a circuit, we propose to extract the paths of
a given circuit automatically using the Quartus Prime Pro
software [35]. However, the approach was not scalable as
with the increase in circuit size, the respective state space
and thus the verification requirements, in terms of time and
memory, grew exponentially. In this paper, we introduce
path based modeling and verification technique using the
model-checker Uppaal to overcome the above-mentioned
scalability issues. The largest verified circuit using this ap-
proach consists of 2779 gates, which is better than the above-
mentioned existing approaches.
The proposed approach introduces some pessimism during
circuit modeling and verification and presents a new trade-
off between STA and traditional formal timing analysis. This
pessimism mainly arises by splitting longer paths in two
or more parts and modeling each part as an independent
Uppaal template. Inputs of each part are modeled non-
deterministically and hence results in over-estimated delay
values. Modeling of all the possible input combinations for
off-path logic also results in pessimistic delay values. This
approach allows us to reduce the verification time and mem-
ory utilization significantly at expense of slight pessimism in
circuits’ delay. However, it is important to note that despite
these pessimisms, the obtained delay values are much more
realistic than the ones obtained. from pure STA as will be
demonstrated in the Case study section of this paper as well.
This technique also reduces the state space for digital circuits
compared to [7] remarkably. Thus, the proposed approach is
able to verify significantly larger number of combinational
as well as sequential circuits (approximately 36 times larger
compared to our previous work). To assist the process of
modeling and verification, a generic framework is provided
in which using the information of delays of basic logic
elements i.e., NOT, NOR, NAND, and a Flip-Flop, timing
behavior of any given digital circuit can be verified such as
the critical paths, the clock time period of a circuit, plus
setup and hold time constraints of a circuit. Since we are
using model checking for timing analysis, so the proposed
approach involves rigorous exploration of state space of a
considered digital circuit.

The remaining paper is structured as follows:We present
some preliminaries, including the foremost foundations
about timing analysis, performance parameters and the Up-
paal model-checker in Section 2. The detailed explanation

of the proposed methodology is presented in Section 3,
followed by the verification results of some real-world case
studies in Section 4. Finally, Section 5 concludes the paper.

2. Preliminaries
2.1. Timing Analysis

Propagation delay of a digital circuit is the most impor-
tant timing parameter that represents the time taken by a
digital signal to proceed from its input port to the output
port. Propagation delay can be calculated using various
techniques i.e., using the SPICE simulator, mathematical
analysis based on differential equations, and the analysis of
rise and fall times. In SPICE [33], the circuit is modeled at
the transistor level. Internal specifications of transistors are
included in the model using the predictive library param-
eters. Simulations of transistor level circuits with the help
of SPICE is used to calculate the propagation delay of a
given circuit. Similarly, the circuit behavior can be modeled
as a set of complex differential equations in terms of the
resistances and capacitances of the underlying transistors.
This mathematical model can then be used for the propa-
gation delay calculation by carefully observing the response
of the circuit at the given conditions. The rise and fall times
based timing analysis technique is most commonly used for
the calculation of propagation delay. In this technique, the
propagation delay is typically calculated on the basis of time
difference in such a way that the time from middle point of
the input to the output signal middle point is measured. This
delay is usually considered to be 50% point of the input-
output transition.

Tprop =
THL + TLH

2
(1)

In the proposed methodology, the particular gate delays are
calculated by considering the transition at each and every
input combination of a gate with the help of the Elmore delay
model [2], which allows us to find the delay by illustrating
every individual circuit in the form of an RC (resistance-
capacitance) tree and hence provides a better estimate of the
delay compared to the above-mentioned traditional approach
[19]. We have used Elmore delay because of its comparative
simplicity and closely approximating the actual delay values
in terms of net widths and lengths [23]. These benefits
have led to its wide usability for delay predictions in the
placement and routing phases of physical design. If Ci isthe accumulated capacitance, and Ris is effective resistancepresent in a path from a source to a leaf node, then the Elmore
delay Te of this path will be,

Te =
∑

i
Ci × Ris (2)

�delay = Te × ln(2) (3)
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Figure 1: Tsetup, Tℎold , and TClk2Q Delay in a Timing Diagram

It is important to note that although we used the Elmore
delay model for delay calculations, the proposed approach is
not restricted to only Elmore delay. We can use other delay
models with the proposed approach as well if required.

Some other important parameters that determine the
timing behavior of circuits include critical path, setup and
hold time constraints, clock time period, e.t.c. Critical path
is the longest path in a circuit from the input port to the
output port. It can be obtained by adding the individual
delays of all the logic components present in the longest path
of the circuit. Timing analysis in a sequential circuit is more
complex because each bit works in synchronization with
a clock. The significant timing parameters in a sequential
circuit include setup time, hold time and clock to Q delay
[44], as shown in Figure 1. The time interval before the
clock edge at which the data must be stable is called the
setup time Tsetup. The minimum time interval at which data
should be stable after the clock edge is the hold time Tℎold .Clock to Q delay TClk2Q is the maximum time from the
clock to the output port. Setup time and hold time violations
can be avoided by meeting the following conditions where
Tcomb is the total delay of all the combinational elements in
a particular path.

TClk2Q + Tcomb + Tsetup ≤ Tclkperiod (4)

TClk2Q + Tcomb ≥ Tℎold (5)

2.2. Uppaal Model-Checker
Uppaal [11] is a model-checker, based on the timed

automata theory [8], developed for the verification of real-
time systems.

A timed automaton (TA) can be defined as a tuple
TA = (S, so, � , �, Y , �), where:

1. S represents the set of all the locations present in a
TA.

2. so ∈ S depicts the initial location of a TA.
3. � represents the set of all the clocks declared in TA.
4. � shows the set of all the actions in a TA.
5. Y ⊆ � × B(� ) × S × 2� ×S is the set of all the edges

present among the various locations.

6. � ∶ S → B(� ) represents the invariants assignment to
the particular locations.

B(� ) shows the set of conjunctions over some simple
conditions, e.g., x ⋈ c or x − y ⋈ c, where x, y ∈ � , c ∈ ℕ
and ⋈ ∈ {≥,=,≤, <, >}. A clock valuation is a function
u ∶ � → ℝ≥0 from the set of clocks to the positive real
values. Thus, u satisfies �(s) can be written as u ∈ �(s).
Timed automaton is basically a finite state automaton having
set of transitions and states, enriched with built-in real value
clocks, which evolve at a fix rate and can be modeled to reset
to their initial value.

A state can be defined as a set of pair (S, �), where �
shows the value of variables and clocks exist in that specific
state. A state has a discrete transition t, and if the guards as-
sociated with the particular transition t are satisfied then the
system moves to the next state (S′, �′). Guards are primarily
the constraints that are present on a transition t, and allow
the system to move to the next state. The synchronization
channels are used for interconnection between two or more
timed automata. The synchronization signal is sent by an
automaton in a desired transition t and received by one or
more automata.

Model verification using the distinct properties is a criti-
cal step in amodel-checking. Just like the systemmodel, sys-
tem properties can be written in a formal language. Uppaal
supports a simplified version of TCTL (timed computational
tree logic) properties.

The Uppaal model-checker is widely used for modeling
and verification of real-time systems, which are modeled as
timed automata. The main idea is to model the real-time
non-deterministic processes in Uppaal in terms of state space
using the built in clocks and communicating channels. This
feature along with the availability of graphical user inter-
face (GUI), communication channels, and counter example
details were among the main motivations behind using the
Uppaal model-checker for this work.

3. Proposed Methodology
The comprehensive proposed methodology for the tim-

ing analysis of digital circuits is illustrated in Figure 2.
The proposed methodology has four primary steps: delay
calculation, path extraction, path modeling and property
verification in Uppaal.
3.1. Delay Calculation

The first step in the proposed methodology is to com-
pute the resistance and capacitance values for NMOS and
PMOS transistors in the ON state using the basic technol-
ogy parameters. This way, the timing models are proposed
for the basic circuit components, i.e., NAND, NOR, NOT
and a Flip-Flop. Complex circuits are further modeled with
the help of these basic gates.NMOS and PMOS [36] gate
capacitances are given below:

CgatenMOS = CgminN × fan − out ×WRnMOS (6)
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Figure 2: Block Diagram of a Proposed Methodology

CgatepMOS = CgminP × fan − out ×WRpMOS (7)
Where Cgmin shows the minimum value of the gate capaci-
tance andWR depicts the width ratio. CL is the load capac-
itance which is computed based on sum of gate capacitances
of all the gates attached at the output of the considered
component.

CL =
a
∑

k=1
CgatenMOSk +

b
∑

j=1
CgatepMOSj (8)

The diffusion capacitance CDiff can be computed with the
help of drain capacitance [45]. The sum of load and diffusion
capacitance allows us to obtain the gate’s total capacitance
CT , which is further used for the calculation of gate delays.

CT = CL + CDiff (9)
The resistance of a PMOS or NMOS [37] can be calcu-
lated using the below formula:

Ron =
1

WL × � × Cox × (VGS − VTH )
(10)

Using the values of corresponding capacitances and
resistances, the Elmore delays can be computed for the NOT,
NOR and NAND gates. Delay is computed on the basis of
all the possible input transitions of a particular gate. For
example, the transistor level diagram of the NAND gate
and the corresponding equivalent circuit in terms of internal
resistances (Rp and Rn) and capacitance (CT and CST ) isshown in Figure 3. In this RC model of the NAND gate,
the resistors act like a switch. The switching of resistors
depend upon the applied input voltages. For example, if a 0

Figure 3: Transistor Level Diagram and Equivalent RC Model
of NAND Gate

input is applied at both terminals A and B then both PMOS
resistances act as short circuits, i.e., no resistance, while both
NMOS resistances act as open circuits or a resistance of
infinity. Similarly, for inputs of 0 and 1, the PMOS resistor
connected with terminal A, and NMOS resistor connected
with terminal B acts as a short while the other resistors act
as an open circuit. In the same way, with 1 and 0 inputs,
the resistor switching is opposite to the previous case while
for both 1s as an input, both NMOS resistors act as short
circuits. These switching behaviors help us to find out the
equivalent resistances and capacitances, and therefore allows
us to derive the Elmore delay equations for the NAND gate.
In a similar way, we build the RC models of NOT and
NOR gates, analyze the resistor switching and derive the
corresponding Elmore delay equations for the NAND, NOR
and NOT gates as shown in Tables 1, 2, and 3,.

True Single-Phase Clocked (TSPC) Flip-Flop model
is used in our model [36] for analyzing the timing char-
acteristics of a Flip-Flop because of its less complexity
and minimum number of transistors to deal with [36]. As
discussed earlier, clock to Q delay, setup time, and the
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Table 1

Delay Equations of a Nand Gate

Input Output Delay Equation

00 1 ln(2) × [(CT × Rp)∕(2 ×WRpMOS )]
01 1 ln(2) × [(CT × Rp)∕WRpMOS ]
10 1 ln(2) × [((CT + CST ) × Rp)∕WRpMOS ]
11 0 ln(2) × [(CT × 2 × Rn)∕WRnMOS ]

Table 2

Delay Equations of a Nor Gate

Input Output Delay Equation

00 1 ln2 × [2 × (CT × Rp)]∕(WRpMOS )
01 0 ln2 × [(CT × Rn)∕WRnMOS ]
10 0 ln2 × [((CT + CST ) × Rn)∕WRnMOS ]
11 0 ln2 × [(CT × Rn)∕(2 ×WRnMOS )]

Table 3

Delay Equations of a Not Gate

Input Output Delay Equation

0 1 ln2 × [(CT × Rp)∕WRpMOS )]
1 0 ln2 × [(CT × Rn)∕WRnMOS )]

Table 4

Delay Equations of a Flip-Flop

Input Output Delay Equation
Tsetup
0 0 ln(2) × [(CT × Rp)∕WRpMOS )]
1 1 ln(2) × [(CT × Rn)∕WRnMOS )]
Tℎold
0 0 ln(2) × [(CT × Rp)∕WRpMOS )]
1 1 ln(2) × [(CT × Rn)∕WRnMOS )]
TClk2Q
0 0 ln(2) × [(3 × CT × Rp)∕WRpMOS )]
1 1 ln(2) × [(3 × CT × Rn)∕WRnMOS )]

hold time, are three important constraints in a Flip-Flop.
In the TSPC Flip-Flop model, setup time is considered
to be equivalent to a single inverter delay, the hold time
is considered to be less than an inverter delay and thus
three times inverter delay becomes the propagational delay.
Similarly, during modeling in Uppaal, we consider the hold
time to be equal to one inverter delay in the worst case. The
delay equations presented in proposed model for the clock to
Q delay, setup time, and the hold time are provided in Table
4.

3.2. Path Extraction
The propagation delay of a digital circuit, which is

composed of numerous logic gates and Flip-Flops, can be
calculated by considering all of its paths, i.e., the paths
from a primary input to the input of a Flip-Flop, between
Flip-Flops, and from the output of a Flip-Flop to a primary
output. The path delay can be computed by adding the
delays of all the logic elements present in that path. We can
manually identify and analyze all timing paths present in a
circuit in case of smaller circuits and can calculate the delays
of all the paths. However, in case of bigger circuits, with
thousands of gates, it is practically impossible to identify
and analyze all the paths manually. Therefore, we propose to
use Altera Quartus Prime Pro [35] to automatically identify
valid paths of a circuit, expressed in a hardware description
language (HDL). It provides the detailed path information
for both combinational and sequential circuits. In case of
combinational circuits, it provides all the possible paths from
all input ports to all output ports. During path analysis of
sequential circuits, it provides paths from the input port to
a Flip-Flop, Flip-Flop to a Flip-Flop, and Flip-Flop to an
output port.

For the path extraction step of the proposed methodol-
ogy, we mainly require the Verilog [43] code of the circuit

that needs to be analyzed, as it is a widely used hardware
description language (HDL).We compile the code and make
sure that there is no syntax or logical error. After compila-
tion, we synthesize the code and run the TimeQuest Timing
Analyzer tool to obtain the paths’ information of a given
circuit based on the Synopsys design constraint file (SDC).
3.3. Path Modeling

In order to perform timing verification of digital circuits,
modeling and verification using the Uppaal model-checker
is the most important step in the proposed technique. In this
process, the first step is the discretization of the delay using
integers for delay modeling in Uppaal. The actual delay
values of basic gates, i.e., NAND, NOR, and NOT gates
are floating point exponentials in the order of picoseconds.
However, Uppaal does not support floating point exponen-
tials. Therefore, we have to discretize the delays in such a
way that they can be analyzed by the Uppaal model-checker.
We divide the overall delay value into the integral and expo-
nential part. We perform Uppaal modeling and verification
using the integral part and combine the exponential part with
the integral part at the end after the verification in Uppaal.
The discretization process of delays in Uppaal is depicted in
Figure 4.

Overall Delay
Exponential

Part

Integral Part Uppaal modeling and
Verification

X Overall Delay

Figure 4: Discretization of Delay in Uppaal

In the proposed methodology, instead of modeling the com-
plete circuit for finding out the maximum delay, we propose
to use the longest path information for delay modeling.
Information about the logic elements present in the longest
path can be obtained using the Quartus Prime Pro Timing

6



Q. Ain, O. Hasan Microprocessors and Microsystems

Analyzer. The longest paths are translated into the state
space and then modeled in Uppaal model-checker in terms
of basic gates i.e., NAND, NOR, Not. In this way, we can
find out the timing parameters i.e., maximum delays, clock
time period, e.t.c., with a significantly reduced state space
size. We primarily check that the longest path delay is less
than or equal to the required maximum delay. If the delay
exceeds the maximum value, then the Uppaal model-checker
provides the counterexample along with the exact trace that
gives information about the timing violation. Thereafter, in
this way we can find out the real cause of property violation
that whether it is due to an actual timing violation or a
modeling error.

In order to facilitate the modeling of digital circuits, we
perform the formal modeling of basic gates, i.e., NAND,
NOR,NOT and a Flip-Flop usingUppaal model-checker and
then these basic models are built upon to develop formal
models of bigger complex circuits. The generic Uppaal
model of basic logic gates is shown in Figure 5 for delay
calculations. A binary value of 0, or 1, is assigned to the
input variable in the initial state S1. Total resistances and
capacitances of a gate is calculated using various technology
parameters in the second state S2. Elmore delay is updated
from the overall resistances and capacitances of a logic gate.
Inputs values are acting as a guard in the third state S3. A
guard is a side-effect free function that returns a boolean
expression. Depending on the input value, logic gate delay
is calculated. For a single input gate, e.g., NOT gate, we
have two guards and based on the guard value, the delay is
calculated e.g., when guard (input) is 0, PMOS is ON and
NMOS is OFF and therefore delay will be the product of CTand RP . Similarly when guard (input) is 1, only NMOS is
ON and the delay equationwill be the product ofCT andRN .
For the two input universal gates, four different combinations
of guards are used for delay calculations as shown in Figure
5. Finally, the output is updated depending upon the type
of logic gate in state S4. After the state S4, all the delays
and output values are reset and the cycle repeats. It is to
be noted that Figure 5 is an abstract level diagram giving
generic overview about modeling of basic gates using state
transition diagram, therefore committed states are not shown
here. Committed states are displayed only in exact Uppaal
model (e.g., Figure 7). In the proposed technique, delay is
an integer variable that updates on a transition depending
upon the given input combination therefore states are made
committed to avoid any delay in states.

The timed automata of the NOT gate in Uppaal model-
checker is shown in Figure 7a where input is xin_not and
output is represented by xout_not. Boolean value 0 or 1 is
assigned to the input xin_not by the selection expression
xin_not: int[0, 1] in the initial state. The fan-out fo_not is
computed by noticing the total number of load gates attached
at the driving gate output port. Elmore delay equation is used
for the calculation of NOT gate delay delay_not on the basis
of the inputs, internal capacitances, internal resistances, fan-
out, and numerous technology parameters. Once the gate
delay has passed, the gate output gets updated.

INPUT
S1 S4S2 S3

Cox,	Vth,	CL,	CT,	Ron,
Cdiff

TECHNOLOGY
PARAMETERS 

τdelay	=	Te	×ln(2	)
ELMORES DELAY

CALCULATED BASED
ON GUARDS 

FOR NOT GATE

GUARDS      DELAY
(Input)           τdelay	
0                   CT X RP 
1                   CT X RN 

FOR NAND GATE

GUARDS        DELAY
(Inputs)          τdelay	
00                  CT X RP / 2
01                  CT X RP
10                (CT+CST)X RP 
11                  CT X 2 X RN 

LOGICAL
OUTPUT 

FOR NOR GATE

GUARDS        DELAY
(Inputs)          τdelay	
00                  CT X RP X 2
01                  CT X RN
10                (CT+CST)X RN 
00                  CT X RN / 2

DELAYS AND OUTPUT RESET

Figure 5: Generic Logic Gates Model

The gate output gets its appropriate value, i.e., the
negation of input out_not:= !(xin_not), after the delay has
elapsed. In the similar way, the models of NOR and NAND
gate have also been developed. Figure 7 b depicts the timed
automata of the NANDgate in Uppaal. These basic gates can
be used to formalize any combinational gate-level circuit.
Sequential circuits contain Flip-Flops along with the logic

t <= Tt
INCRMENTS

t RESETS, CLK SIGNAL 
SENT

INPUT
S1 S2 S3

Cox,	Vth,	CL,	CT,	Ron,
Cdiff

TECHNOLOGY
PARAMETERS 

Tsetup, Thold, and Tclk2Q
updated based on guards (inputs)

CLK SIGNAL
RECEIVED

SETUP TIME
Tsetup

S4

HOLD TIME Thold,
CLK2Q DELAY Tclk2Q 

OUTPUT

T : Clock Time Period
t  :  Clock Variable

S5 S6

FLIP-FLOP

CLOCK

S1 S2 S3

DELAYS AND OUTPUT RESET

Figure 6: Generic Flip-Flop and a Clock Model

gates. The generic model of a proposed Flip-Flop along with
the clock signal as illustrated in the Figure 6. The clock
model has three states. In the first state S1, clock variable
t increases until it reaches the clock time period T . In state
S3, clock cycle completes and the clock variable t resets. As
soon as the clock cycle completes, clock signal is sent to the
Flip-Flop. The input signal is updated in the first state S1
in the Flip-Flop model. On the basis of the inputs, internal
capacitances, internal resistances, and numerous technology
parameters, i.e., the setup time, hold time and clock to Q
delays are computed using the equations of Elmore delay.
Similar to the gate model, input values act as a guard in
States S3 and S5. The setup timeTsetup, hold timeTℎold and
clock to Q delaysTClk2Q are calculated depending upon the
guard values. In State S6, the input value is assigned to the
output after the clock cycle and then the output and delays
are reset.

In the proposed approach, we can build models of larger
and more complex circuits by integrating the basic logic
gate and Flip-Flop models. In this way, we have developed
a library of gate models and all the circuits can be imple-
mented using these models. The AND gate up to 4 inputs, 3
inputs OR gate, and a sequential circuit’s path are shown in
Figure 8. Similarly, NOR, OR and other higher input gates
are implemented.

7

QQQ
Highlight



Q. Ain, O. Hasan Microprocessors and Microsystems

(a) NOT Gate (b) NAND Gate

Figure 7: Timed Automata (TA) of NOT and NAND Gate

Figure 8: Use of NAND, Not, NOR Gates for Higher Inputs
Gates' Circuits

Wemainly propose to model the longest paths in Uppaal
instead of modeling the complete circuit to overcome the
state space explosion issues. In a combinational circuit,
delay of the longest path is measured directly from input port
to output port. However, in a sequential circuit, the longest
path is identified by observing three kinds of paths, i.e., from
the input ports to the inputs of the Flip-Flop, between Flip-
Flops, and from Flip-Flops to the output ports. We mainly
focus on clock time period in case of sequential circuits.
While analyzing the delays in a combinational or sequential
circuit, there could be very large paths that can lead to state
space explosion problem as well. In such cases, we propose
to partition such path into smaller parts as shown in Figure
9. The main idea is to split the longer paths, that we obtain
from RTL netlist, in such a way that the total delay of the
original path is equal to the sum of the delay of the smaller
parts. Consider the longest path P with delay DT . The firststep is to divide the pathP intoN parts.DP1, DP2, andDPNare delays of the partitioned paths part1, part2, and partN ,
respectively. Since we divide P intoN parts, we can say that
the total delayDT is equal to the sum of delays of all the parts
of a considered path.

DT = DP1 +DP2⋯⋯ +DPN (11)

RTL NETLIST FROM VERILOGLONG PATHS

 PATHIN OUT PART 1IN OUTPART 2 PART N

ONE OF THE LONGEST PATHS PATH PARTITIONING

Figure 9: Generic Path Partitioning Technique

Dmax is the maximum possible delay of a path. With the help
of the Uppaal model-checker, we will verify that the sum of
delays of all the parts of a considered path cannot exceed
Dmax as stated in the following equation,

DP1 +DP2⋯⋯ +DPN ≤ Dmax (12)
From Equations 11 and 12, we can imply

DT ≤ Dmax (13)
The proposed path partitioning is illustrated in Figure 10

in which one of the paths of the C17 benchmark circuit is
modeled and then divided into 3 parts. Each part is modeled
as a separate timed automata and verified with a separate
property. The overall verification time is obtained by adding
the time of each part and the overall memory utilization is
considered to be the maximum of memories utilized by the
three parts as illustrated in the equations below where TTrepresents the total verification time andMT represents the
overall memory utilization during verification by a circuit.
The effect of path partitioning and its comparison with STA
approach is shown in Section 4.3.

TT = t1 + t2 +⋯⋯ + tN (14)

MT = max(m1, m2,⋯⋯ , mN ) (15)

8
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Figure 10: Time and Memory Management for a Longer Path
in Uppaal model-checker for C17 Benchmark Circuit

Figure 11: A Typical Sequential Circuit

3.4. Property Verification
Now we will discuss the TCTL properties for analyzing

timing behavior of circuits, like maximum delay, time period
of a clock, setup and hold time constraints e.t.c.,

1. In order to ensure that timed automaton is not stuck in
any specific state, we mainly check the deadlock prop-
erty. Deadlock is a predefined predicate in Uppaal.
∀ □ not deadlock

2. For the verification of combinational circuits, we
check the delay of the given path is less than the
allowed margin, i.e., the maximum allowed value. We
receive a counterexample when circuit delay exceeds
the maximum value and property verification fails.
If the delay exceeds the maximum value and the
property fails then we get a counterexample. Coun-
terexample can be very useful in tracing the exact
cause of property failure.

∀ □ !((delayg1 + delayg2 +⋯⋯ + delaygn)
> Dmax

comb
))

Where delayg1 shows the delay of a first gate, and
Dmaxcomb represents the maximum delay allowed as
per the timing requirements of the given circuit.

3. For the verification of sequential circuits, we examine
the path delays from input ports to Flip-Flops and then
from Flip-Flops to output ports, in a similar way as
we analyze the propagational delays of combinational
circuits. Furthermore, for analyzing the Flip-Flop to
Flip-Flop path, we consider the Tsetup and Tℎold time
constraints to find out the clock period T of a given
sequential circuit and to prevent metastability. For
example, if we consider a typical sequential path,
shown in Figure 11, where IN is an input port, FF1
and FF2 are two Flip-Flops, and OUT is an output
port. We consider i gates between the input port IN
and a first Flip-Flop FF1, n gates between the two
Flip-Flops, and j gates between a second Flip-Flop
FF2 and an output port. Following properties are
proposed to be verified in this case.
∀ □ ((delayg1+delayg2+⋯+delaygi)≤D max

INtoFF
)

which states that the sum of delays of all the logic
elements from input port IN to the Flip-Flop FF1
must be less than or equal to DmaxINtoFF , where
DmaxINtoFF is the maximum delay value that a path
from input port to a Flip-Flop can attain.

∀ □ (T ≥ (FF1clk2Q+delayg1+delayg2+⋯+
delaygn)+FF2setup)

This property avoids setup time violation by adding
the clock to Q delay of first Flip-Flop FF1, delays of
all the logic elements between Flip-Flops and setup
time of second Flip-Flop FF2. This property deter-
mines the minimum required time period of clock T .

∀ □ ((FF1clk2Q+delayg1+delayg2+⋯+
delaygn)≥FF2ℎold)

This property avoids hold time violation by ensuring
that the clock to Q delay of first Flip-Flop FF1 and all
the logic elements between Flip-Flops must be greater
than or equal to the hold time of second Flip-Flop
FF2.

∀ □ ((FF2clk2Q+delayg1+delayg2+⋯+
delaygj)≤D max

FF toOUT
)

This property determines the maximum delay from
the second Flip-Flop FF2 to the output port OUT by
adding the delay of second Flip-Flop FF2 and all the
logic elements from FF2 to the output port OUT .

We propose Algorithm 1 for identifying the maximum
delay of a path, and a required time period of a clock to avoid
the setup and hold time violations. This algorithm computes
the delay T emp_Delay based on the analysis of counter ex-
amples.Wemainly check if the total delay of a path is greater
than T emp_Delay. If yes, Uppaal will generate a counter
example showing the delay value greater than T emp_Delay,

9
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and then T emp_Delay value is updated with a new delay
value by adding the difference of delay value in it. This pro-
cess continues until T emp_Delay becomes the maximum
delay value and the property gets satisfied as shown in Lines
13 of an Algorithm 1. After this, T emp_Delay value is saved
in Tmax_Delay, which represents the maximum delay of
a path. Process outlined in Algorithm 1 is done manually.
However, it can be automated using a simple script as the
process involves repeatedly invoking the UPPAAL model
checker until a property corresponding to the delay of the
circuit is satisfied. Once the circuit is formally modeled, it
is formally verified against the given property according to
the Algorithm 1 to obtain the maximum delay of a circuit.
The modeling of the circuit using state transition diagram
and property writing is completely manual while property
verification and generation of a counter example is fully
automatic.
Algorithm 1Maximum Delay Computations
1: Tmax_Delay: Maximum delay of a path
2: Delay: Circuit path delay value computed by Uppaal at

run time
3: Temp_Delay: Temporary delay value given at instance

in property.
4: Time_Clock: Time period of a clock in a particular

sequential circuit
5: Delay_FF: Delay of a path present between two Flip-

Flops computed by Uppaal at run time
6: Temp_Clock: Temporary clock time period given at

instance in property.
7: Analysis:
8:
9: do ⊳ Finding maximum delay of a path

10: Generate counter example
11: Temp_Delay← Temp_Delay + � ⊳ � is a time

difference computed by analyzing counter example.
12: while (Delay > Temp_Delay);
13: Tmax_Delay← Temp_Delay ⊳ Store the maximum

delay value
14:
15: do ⊳ Finding maximum time period of a clock
16: Generate counter example
17: Temp_Clock ← Temp_Clock + �
18: while (Delay_FF > Temp_Clock);
19: Time_Clock ← Temp_Clock ⊳ Store the maximum

delay value in clock time period

4. Case Studies
Using the proposed approach, timing properties of C17,

and S27 benchmark circuits are formally verified for illus-
tration purpose.
4.1. C17 Benchmark Circuit

C17, as shown in Figure 12(a), is one of the benchmarks
from ISCAS-85. It consists of 6 NAND gates having 5 input

ports and 2 output ports. One of the longest path of the C17
circuit generated from Quartus Prime Pro Timing Analyzer
is modeled in Uppaal as shown in Figure 13. This path
consists of NAND2, NAND3, and NAND6 gates. Each of
these three gates have two inputs. First two gates have a fan-
out value of 2. This path is verified in 0.01sec utilizing 9.6
MB memory. During the complete path modeling as shown
in Figure 13, since N2, N3, and N6 are direct external inputs
to NAND2 and NAND3 gates, therefore non-deterministic
modeling of these inputs will not result in a pessimistic delay.
NAND6 gate does not have any external input, instead its
inputs are basically outputs of the NAND3 and NAND4
gates. Unlike NAND3, NAND4 gate is not a part of the
considered longest path, and only its output affects the delay
of the NAND6 gate indirectly. So, instead of completely
modeling the NAND4 gate and providing its logical output
to NAND6 gate, we non-deterministically model NAND4’s
output (NAND6 second input), and compute the worst case
delay of a path by considering delay against both 0 and 1
logical inputs. In this way, some pessimism can be intro-
duced in the complete path analysis due to off-path logic that
affects the path delay. The property that is verified against the
modeled path is as follows, where Tmax shows the largest
allowable delay value for a specific path i.e., 17.72 ps

∀ □ (!(c17p1 > Tmaxc17−p1))

Other paths of C17 benchmark circuit have also been verified
and details can be found in [6].

In order to illustrate the working of the proposed path
partitioning technique, we partitioned the path of Figure 13
into two parts, as shown in Figure 14. We modeled these two
parts in separate Uppaal templates and verified with specific
properties in order to obtain the delay of each part. We split
the path before NAND6 gate. Hence, the delay of NAND6
will not be dependent on the output of NAND3 for delay
computations as the NAND6 gate is in a separate sub-path,
so its delay will be computed for any of its four input vectors.
Contrary to the above-mentioned complete path analysis,
here both the inputs of NAND6 gate are modeled non-
deterministically considering both of them as off-path logic,
and thus resulting in some pessimism in an overall delay of
a path. By modeling the off-path logic and side inputs non-
deterministically, delay will be a bit overestimated. Due to
path partitioning between NAND3 and NAND6, both parts
are modeled as independent templates. The total delay of this
path can be calculated as the sum of delay of these two sub-
paths as shown below where TmaxC17−p1T is 17.80 ps. This
property is verified in 0.001 sec, utilizing 6.5MB ofmemory.

∀ □ (!(c17p11 + c17p12 > Tmaxc17−p1T ))

4.2. S27 Benchmark Circuit
S27, as shown in Figure 12(b), is one of the sequential

circuit benchmarks from ISCAS-89. It has 10 gates and 3
10
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(a) C17 Circuit (b) S27 Circuit

Figure 12: ISCAS Benchmark Circuits

Figure 13: Timed Automata for C17

Flip-Flops with 4 input ports and 1 output port. S27 circuit
is modeled in Uppaal considering the paths from input ports
to Flip-Flops, between the Flip-Flops, and fromFlip-Flops to
output ports. The paths are obtained from the Quartus Prime
Pro Timing Analyzer’s path report. However, due to their
relatively larger size of the state space, we did not represent
the timed automata here. The details of the modeled path in
terms of gates are as follows:
de l ay__p1_ i n =( de l a y2__o r+de lay1__nand+de l ay4__no r ) ; / /

G3 −−> FF3
de l a y __p1_ f f =( de lay1__c lk2Q+de l ay4__no r+de l a y 3__ s e t u p ) ;

/ / FF1 −−> FF3
de l ay__p1_ou t =( de lay2__c lk2Q+de l ay3__no r+de l ay1__o r+

de lay1__nand+de l ay4__no r+de l a y2__no t ) ; / / FF2 −−>
G17

Properties that has been verified for the above mentioned
paths are shown below. Other properties of this benchmark
circuit for various other paths has also been verified and
one can see the detail in [6]. Tmax, shows the largest value
of delay and Tclk, depicts the clock time period in these
properties.
∀ □ (delayp1−in ≤ Tmaxp1−in)
∀ □ (Tclk ≥ (delayp1−ff ))
∀ □ (delayp−ℎ1 ≥ (delay3−ℎold))
∀ □ (delayp1−out ≤ (Tmaxp1−out))

4.3. Results of Timing Verification
All the case studies are executed on 2.10 GHz 64-bit

Window with 6GB RAM. It is important to note that tradi-
tional STA does not consider the circuit functionality while
calculating the delays but the proposed technique allows us
to compute the delays while considering all input combina-
tions and the circuits’ functionality along with delays of each
component.

Minimum and maximum delays of NAND, NOR, AND,
OR logic gates with multiple inputs and their comparison
with STA is shown in Figure 15. A comparison of results
from the proposed path partitioning technique with STA
approach is shown in Table 5 and Figure 16 with some
ISCAS’85 case studies. Due to path partitioning, although
delays are little bit deviating from original values but far
more realistic than the STA approach. The main justification
for this is that in the proposed technique, we are considering
all input vectors and the functionalities the of circuits. We
can also observe that we have slightly compromised the
accuracy of the results to make the approach more scalable
as the results are not as accurate as the ones obtained
without partitioning but they are much more realistic than
STA.Due to the modeling of side inputs and off-path logic
non-deterministically in the partitioned paths, the reported
delay of the overall circuit is slightly overestimated in the
proposed approach. The differences of delays between the
analysis of the complete path and the partitioned path is
shown in Table 5. Based on the considered cases, it can be
easily observed that the difference is less than 1%. Moreover,
the greater the the off-path logic and the number of side in-
puts, the greater the difference is, but even with the error the
reported delays are more accurate than the results obtained
through traditional STA. Comparison of clock time period
of sequential circuits is shown in Table 6.

The considered combinational circuits and their ver-
ification statistics while verifying the longest paths in a
circuit are summarized in Table 7 using the information
about the total number of gates, its verification time, and the
overall memory utilization during the verification phase of
the corresponding circuit’s path. Modeling and verification
details of longest paths of sequential circuits are summarized
in Table 8, providing the information about the total number
of gates and Flip-Flops, verification time, and the overall
memory consumption by state space during the verification
process.

We have noticed significant increase in the number of
explored states during verification with an increase in the
state space size. For example, the total number of explored
states in the C6288 benchmark circuit is 311272 whereas
130528 states were explored while analyzing the S5378
benchmark circuit. These explored states are much less in
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(a) (b)

Figure 14: Timed Automate of C17 Partitioned Path.

Table 5

Comparison of Delays of Complete Path, Partitioned Path,
STA Approach

Circuits Comp Path (ps) Part Path(ps) Di�(ps) STA (ps)

C17[17] 17.72 17.80 0.08 17.80
C432[17] 145.70 145.70 0 186.36
C499[17] 172.69 173.91 1.22 225.32
C1908[17] 115.74 116.66 0.92 120.32
C3540[17] Can't model 468.31 - 520.46
C6288[17] Can't model 663.78 - 689.76

Table 6

Comparison of Clock Time Period with STA approach

Circuits Path Delays (ps) STA Delays (ps)

S27 [16] 27.24 32.62
S208 [16] 122.39 131.48
S386 [16] 85.82 104.48
S820 [16] 419.90 427.8
S1423 [16] 156.48 169.80
S5378 [16] 84.59 111.64

Figure 15: Comparison of Logic Gate Delays of Proposed and
STA Technique

number in comparison with [7], where the complete circuit
is modeled in Uppaal instead of the paths.

In comparison with an existing approach, presented in
[7], where Uppaal model-checker is used for modeling and
verification of digital circuits, we find the proposed tech-
nique to be much more efficient as shown in Figure 17(a).
These results are based on the analysis of maximum time
and memory consumption by the Uppaal model-checker.
For example, in case of the C17 circuit, the verification
time in [7] and the proposed technique is 0.014 s and
0.001 s, respectively. In [7], the complete circuit is modeled
in Uppaal for timing verification while only the longest

Figure 16: Comparison of Delay Di�erence using Three Di�er-
ent Approaches

path, obtained from Quartus Prime Pro Timing Analyzer,
is modeled in Uppaal in the proposed technique to cater
for the state-space explosion problem. Comparison between
the two approaches in terms of memory utilization is shown
in Figure 17b. Scalability of the proposed approach can be
observed from Figure 18 where the runtime is increasing
with larger number of gates.

Table 7

Time and Memory Utilization in Combinational Circuits

Comb circuits Max. Gates
Veri�cation
Time(s) Memory(MB)

C17 [17] 6 0.001 6.5
C432 [17] 160 1.985 340.2
C499 [17] 202 0.5 125
C1908 [17] 880 1.18 246.4
C3540 [17] 1669 17.743 1261
C6288 [17] 2416 44.90 3844.4

Table 8

Time and Memory Utilization in Sequential Circuits

Circuit
Veri�cation

Max. Gates FF
Time(s) Memory(MB)

S27 [16] 0.013 50.83 10 3
S208 [16] 0.125 32.08 96 8
S386 [16] 0.094 57.78 159 6
S820 [16] 0.782 105.4 289 5
S1423 [16] 0.14 30.5 657 74
S5378 [16] 0.031 21.9 2779 179
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(a) Veri�cation Time of [7] and
the Proposed Technique

(b) Memory Utilized by [7] and
the Proposed Technique

Figure 17: Comparison with Existing Technique [7]

Figure 18: Comparison of Simulation Time and No. of Gates

A brief comparison of proposed technique with some ex-
isting approaches is represented in Table 9. This comparative
analysis is primarily based on six parameters. The first two
parameters depict the type of analyzed circuit, i.e, combi-
national or sequential circuit. The next two parameters show
the techniques used for the delaymodeling of circuits and the
model-checker used for timing verification. At the end, the
final two parameters refer to the maximum number of gates
and Flip-Flops verified by the corresponding approaches.
The proposed approach is proved to be better than already
existing mentioned techniques in the following ways:

1. We proposed timing verification of both the combi-
national and sequential circuits unlike existing tech-
niques [38], [2],[4],[3].

2. Contrary to assumed delay models as used in [13],
[22], [38], [42], we determine the delay of logic gates
using the Elmore delay modeling technique [2] to
facilitate more realistic modeling and verification.

3. In comparison with all existing approaches of for-
mal timing analysis, we model and verify digital cir-
cuits containing larger number of gates and Flip-Flops
mainly because of the proposed path based modeling
approach.

4. We proposed to compute the delays of digital circuits’
bymodeling and verification of longest paths using the
Uppaal model-checker while considering the circuits
functionality and all possible input vectors as well.We
also proposed a path splitting technique in order to
overcome the state-space explosion issue. Moreover,

we presented an example to compare the delays com-
puted through the proposed approach and the classical
STA and our previously proposed unpartitioned for-
mal functional timing analysis approach [7].
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Table 9

Comparison of Proposed Technique with the Existing Approaches

Related Work Comb circuits Seq circuits Delay Model Tool Max Gates Max FF

Bozga et al. [13] ✓ ✓ Assumed delay Open-Kronos 24 4
Salah et al. [38] ✓ x Assumed delay Open-Kronos 88 x
Clariso et al. [22] ✓ ✓ Symbolic delay Abstract Algorithm 12 4
Bara et al. [10] ✓ ✓ SPICE delay Kronos/ Uppaal 100 15
Abbasi et al. [2] ✓ x Elmore delay nuXmv 68 x
Ain et al. [7] ✓ ✓ Elmore delay Uppaal 415 64
Abbasi et al. [4] ✓ x Elmore delay nuXmv 166 0
Abbasi et al. [3] ✓ x Elmore delay nuXmv 1669 0
Proposed Methodology ✓ ✓ Elmore delay Uppaal 2779 179

5. Conclusions
This paper presents a technique for formal timing analy-

sis of digital circuits using amodel checking based approach.
Digital circuits are formally modeled in the form of state
transitions diagrams and their timing behavior is formally
verified using the TCTL queries with the help of the Uppaal
model-checker Uppaal. Models of fundamental components
of digital circuits, i.e., NAND, NOR, NOT gates and Flip-
Fops have been developed and then these basic models are
used in modeling of further bigger and complicated circuits.
Hence, a generic framework has been developed to facilitate
formal modeling of complex circuits upto 2779 gates. Our
technique results in much reduced state space as wemodeled
the longest paths of circuits instead ofmodeling the complete
circuit for timing analysis. The proposed approach provides
automatic path extraction using Quartus Prime Pro that
facilitates its usage for larger circuits. We also presented
a path based partitioning technique to make analysis more
scalable. An algorithm for the computation of maximum
delays of circuits has also been proposed. This approach can
be helpful in formal verification of several timing properties
of digital circuits, i.e., determining the clock period of a
circuit, finding out the setup time, hold time constraints
and critical path in a circuit. For illustration purposes, we
conducted the formal timing analysis of the ISCAS-85 and
ISCAS-89 benchmark circuits.We can reduce the transitions
by modeling only minimum and maximum delay values
for each gates instead of modeling different delay values at
each and every input combination. The reduced number of
states and transitions will eventually require less memory for
verification and thus makes the approach more scalable but
would provide more pessimistic results. Future plan is to in-
corporate clock skew and routing delays in a circuit to obtain
a more realistic and accurate timing model. The proposed
approach can also be parallelized to be more scalable by
utilizing many-core CPUs for multi-threaded applications.
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